



## Paving the way for optimal disease control in moderate-to-severe type 2 asthma

An expert panel discussion recorded in March 2021



### Disclaimer

- Unapproved products or unapproved uses of approved products may be discussed by the faculty; these situations may reflect the approval status in one or more jurisdictions
- The presenting faculty have been advised by touchIME to ensure that they disclose any such references made to unlabelled or unapproved use
- No endorsement by touchIME of any unapproved products or unapproved uses is either made or implied by mention of these products or uses in touchIME activities
- touchIME accepts no responsibility for errors or omissions



### Oakstone

- Oakstone is accredited by the Accreditation Council for Continuing Medical Education, the American Nurses Credentialing Center and the Accreditation Council for Pharmacy Education to provide continuing education to healthcare professionals. As an accredited provider, Oakstone is required to disclose personal information to relevant accredited bodies that certify CME/CE to process credits/contact hours, comply with reporting requirements, and for internal recordkeeping and regulatory purposes. Oakstone does not share or sell any individual's contact information or unique identifiers to any commercial supporter, advertiser, or third party without the specific permission of the individual
- Walter Murray Yarbrough, MD, FACP has no conflicts of interest to disclose





#### Dr Michael Wechsler

National Jewish Health Denver, United States



### Dr Flavia Hoyte

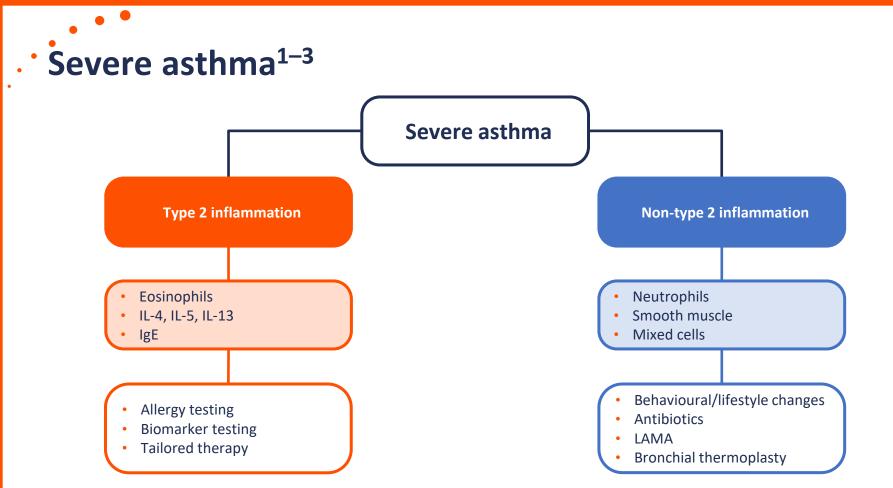
National Jewish Health Denver, United States Dr Roland Buhl

University of Mainz Mainz, Germany





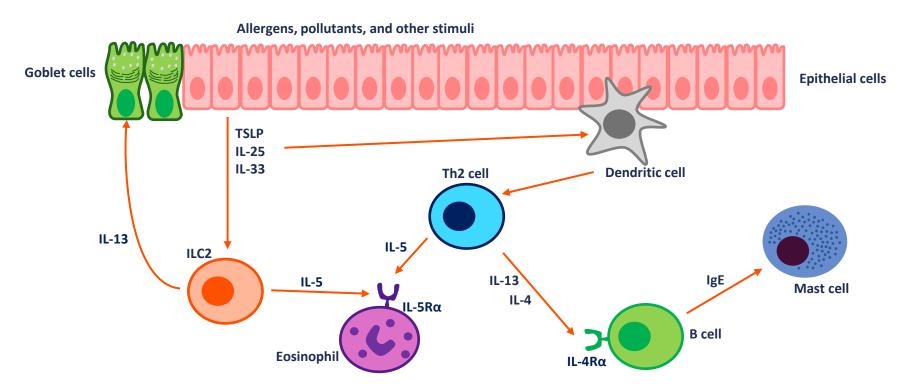
Unravelling the pathogenesis of type 2 asthma


Identifying patients with type 2 asthma: Clinical and molecular considerations

**Biologics in moderate-to-severe type 2 asthma: Current and future perspectives** 



# Unravelling the pathogenesis of type 2 asthma



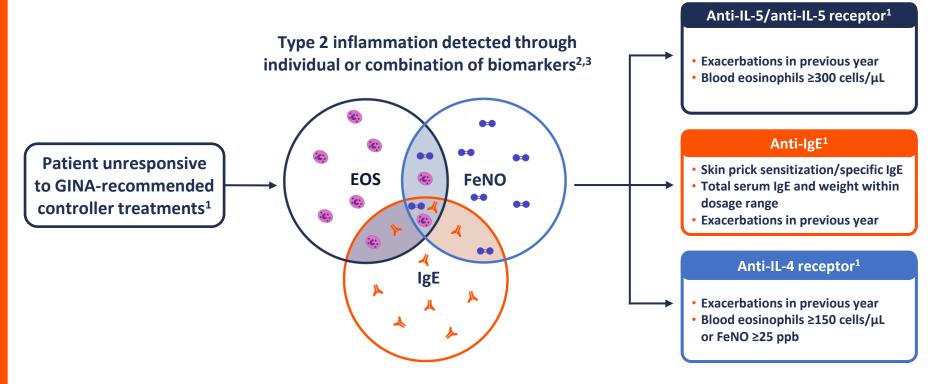



lgE, immunoglobulin E; IL, interleukin, LAMA, long-acting muscarinic antagonist. 1. Godar M, et al. *MAbs* 2018;10:34–45; 2. Stoodley I, et al. *Breathe*. 2019;15:e50–61; 3. Fajt ML, Wenzel SE. Allergy Asthma Immunol Res. 2017;9:3–14.



## What is type 2 inflammation?




IgE, immunoglobulin E; IL, interleukin; IL-4Rα, IL-4 receptor alpha; IL-5Rα, IL-5 receptor alpha; ILC2, group 2 innate lymphoid cell; Th2, T helper 2; TSLP, thymic stromal lymphopoietin. Pelaia C, et al. *Front Immunol*. 2020;11:603312.



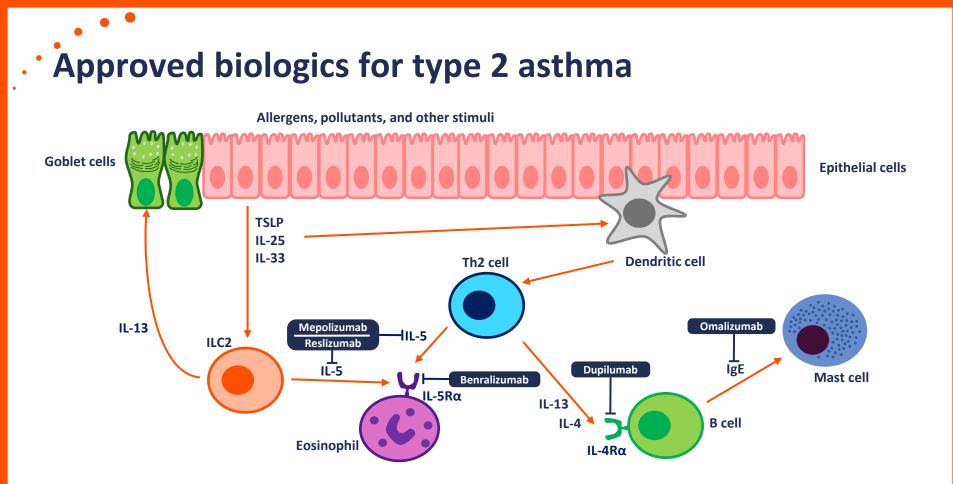
### Identifying patients with type 2 asthma: Clinical and molecular considerations



### Guidelines for type 2 asthma diagnosis and treatment



EOS, eosinophils; FeNO, fractional exhaled nitric acid; GINA, Global Initiative for Asthma; IgE, immunoglobulin; IL, interleukin; ppb, parts per billion.


1. Global Initiative for Asthma: Global strategy for asthma management and prevention. 2020. Available at: www.ginasthma.org/gina-reports/ (accessed 17 March 2021);

2. Ray A, et al. Am J Physiol Lung Cell Mol Physiol. 2015;308:L130–40; 3. Brusselle GG, et al. Nat Med. 2013;19:977–9.



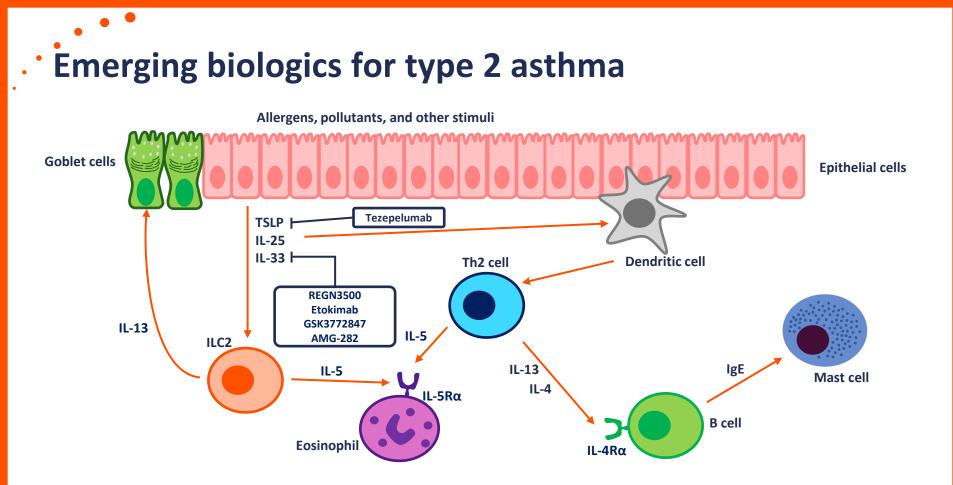
### **Biologics in moderate-to-severe type 2** asthma: Current and future perspectives





IgE, immunoglobulin E; IL, interleukin; IL-4Rα, IL-4 receptor alpha; IL-5Rα, IL-5 receptor alpha; ILC2, group 2 innate lymphoid cell; Th2, T helper 2; TSLP, thymic stromal lymphopoietin. Pelaia C, et al. *Front Immunol*. 2020;11:603312.




## • Future perspectives for approved biologics

### Ongoing phase III trials in moderate-to-severe asthma

| Benralizumab                                     |                                         |                                                |                                         |                              |                                           |                                             |                                       | Mepolizumab                             |  |
|--------------------------------------------------|-----------------------------------------|------------------------------------------------|-----------------------------------------|------------------------------|-------------------------------------------|---------------------------------------------|---------------------------------------|-----------------------------------------|--|
| PONENTE NCT03557307                              |                                         | MIRACLE NCT03186209                            |                                         | TATE NCT04305405             |                                           | NCT03470311                                 |                                       | NCT03562195                             |  |
| Adults<br>(≥18 years)                            |                                         | Adolescents and adults (12–75 years)           |                                         | Children<br>(6–11 years)     |                                           | Adults<br>(≥18 years)                       |                                       | Adolescents and adult<br>(≥12 years)    |  |
| To reduce OCS in patients receiving ICS and LABA |                                         | Uncontrolled asthma despite ICS, LABA, and OCS |                                         | PK, PD, and long-term safety |                                           | Prednisone-dependent<br>eosinophilic asthma |                                       | Efficacy and safety in a Chinese cohort |  |
|                                                  |                                         |                                                |                                         | Dupilu                       | mab                                       |                                             |                                       |                                         |  |
|                                                  | Continuation of TRAVERSE<br>NCT03620747 |                                                | Liberty Asthma Excursion<br>NCT03560466 |                              | NCT03884842                               |                                             | NCT03782532                           |                                         |  |
| <b>*</b> †*<br>†*†                               | Adolescents and adults<br>(≥12 years)   |                                                | Children<br>(7–12 years)                |                              | Adults<br>(≥18 years)                     |                                             | Adolescents and adults<br>(≥12 years) |                                         |  |
| ļ                                                | Long-term<br>safety                     |                                                | Long-term safety<br>and tolerability    |                              | To suppress airway<br>hyperresponsiveness |                                             | Efficacy in persistent asthma         |                                         |  |

MMUNOLOGY

ICS, inhaled corticosteroid; IL, interleukin; LABA, long-acting  $\beta_2$ -agonist; OCS, oral corticosteroid; PD, pharmacodynamic; PK, pharmacokinetic. Clinical trials listed by their identifiers at: ClinicalTrials.gov (accessed 17 March 2021).



IgE, immunoglobulin E; IL, interleukin; IL-4Rα, IL-4 receptor alpha; IL-5Rα, IL-5 receptor alpha; ILC2, group 2 innate lymphoid cell; Th2, T helper 2; TSLP, thymic stromal lymphopoietin. McGregor MC, et al. *AJRCCM*. 2019;199:433–45.

