touchEXPERT OPINIONS®

# Improving patient outcomes in moderate-to-severe ulcerative colitis

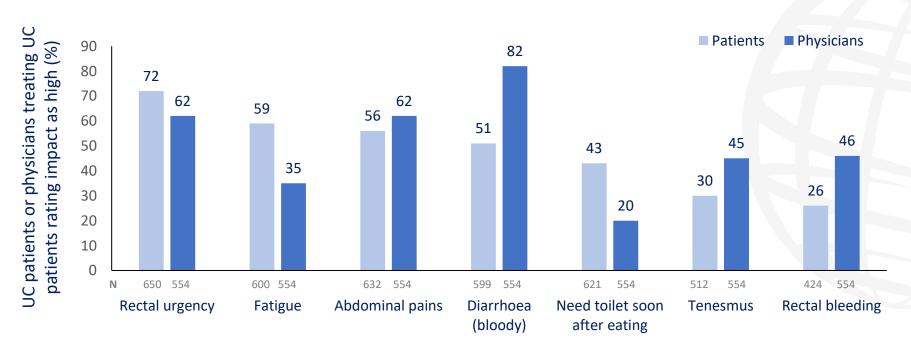


### **Disclaimer**

- Unapproved products or unapproved uses of approved products may be discussed by the faculty; these situations may reflect the approval status in one or more jurisdictions
- The presenting faculty have been advised by USF Health and touchIME® to ensure that they disclose any such references made to unlabelled or unapproved use
- No endorsement by USF Health and touchIME® of any unapproved products or unapproved uses is either made or implied by mention of these products or uses in USF Health and touchIME® activities
- USF Health and touchIME® accepts no responsibility for errors or omissions



# What is the significance of the disease burden of ulcerative colitis when assessing patients?


### **Prof. Ailsa Hart**

Consultant Gastroenterologist, St Mark's Hospital and Academic Institute, London, UK





# Patient- and physician-reported symptoms with the greatest impact on quality of life in ulcerative colitis





Integrated approach for holistic, patient-centred IBD care

Quantity of payonosis of psychosocial distress and optimise to the property of the property of the psychosocial distress and optimise to the psychosocial di The diagonal distress and optimise well-being to the state of the stat Healing Thomitor, adjust ("tight continues of the state of the st String treatment of inflanting Arompt diagnosis of IBD



# BOOST: Living well with fatigue, pain and urgency in IBD<sup>1,2</sup>



A programme designed to give patients the tools, skills and support to better manage symptoms in addition to routine medical care



30-minute telephone call with an IBD nurse

12 online sessions (one per week recommended)



#### **IBD-BOOST Trial:**

A randomized controlled trial of an interactive online symptom management programme with nurse support in addition to routine medical care vs routine medical care alone

(www.kcl.ac.uk/research/ibd-boost)



# Burden of current treatment options for patients with ulcerative colitis

#### **Clinical concerns**



Treatment side effects<sup>1,2</sup>



Hospital visits for infusions<sup>2,3</sup>



Drug monitoring procedures and appointments<sup>2</sup>

### **Psychosocial concerns**



Unpredictable disease course, relapse and treatment failures<sup>2</sup>



Fear of surgical procedures and surgery outcomes<sup>2</sup>



Embarrassment and lifestyle changes following colectomy<sup>2</sup>



# The importance of timely diagnosis and early treatment in ulcerative colitis: Why does it matter?


### **Dr Gil Y Melmed**

Co-Director, Inflammatory Bowel Disease Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA





# Similar to Crohn's disease, ulcerative colitis may have a progressive disease course



# Identifying patients at a high risk for developing ulcerative colitis



## Clinical features associated with severe disease<sup>1</sup>

- Extensive disease
- Deep ulcers
- Extra-intestinal manifestations



### Patient history and demographics<sup>1,2</sup>

- Family history of IBD
- Young age (<40 years)</li>
- History of gastroenteritis
- Oral contraceptives, HRT, NSAIDs



### Biomarkers to identify severe disease<sup>1,2</sup>

- Elevated serum inflammatory markers
- Faecal calprotectin or lactoferrin



### Environmental factors<sup>2,3</sup>

- Former smoker
- High perceived stress or stressful life events associated with IBD



### **Approved treatments for ulcerative colitis**

### Mild-to-moderate disease<sup>1</sup>

- Oral/rectal 5-ASA are the mainstay of treatment
  - Sulfasalazine
  - Mesalamine
  - Diazo-bonded 5-ASA
- In patients with 5-ASA refractory disease, the addition of either oral prednisone or budesonide MMX is suggested

#### Moderate-to-severe disease<sup>2</sup>

- A number of drug classes are approved
  - Biologic agents:
    - TNF-α antagonists (infliximab, adalimumab, golimumab)
    - Anti-IL-12/IL-23 (ustekinumab)
    - Anti-integrin (vedolizumab\*)
  - Immunomodulators (thiopurines, methotrexate)
  - Small molecules
    - JAK inhibitor (tofacitinib†)
    - S1P receptor inhibitor (ozanimod³)



<sup>\*</sup>Currently approved for intravenous administration by the EMA and FDA; a subcutaneous formulation is also approved by the EMA.<sup>2,4</sup>

<sup>†</sup>In biologic-naive patients with moderate-to-severe ulcerative colitis, tofacitinab is currently only recommended for use in the setting of a clinical or registry study.

<sup>5-</sup>ASA, 5-aminosalicylates; EMA, European Medicines Agency; FDA, US Food and Drug Administration; IL, interleukin; JAK, Janus kinase; MMX, Multi-Matrix System; PI, prescribing information; S1P, sphingosine 1 phosphate; SmPC, summary of product characteristics; TNF-α, tumour necrosis factor alpha.

<sup>1.</sup> Ko C, et al. *Gastroenterology*. 2019;156:748–64; 2. Feuerstein J, et al. *Gastroenterology*. 2020;158:1450–61; 3. FDA. Ozanimod Pl. Revised 2021; 4. EMA. Vedolizumab SmPC. Revised 2022. Pl and SmPC available via the FDA and EMA, respectively at: www.accessdata.fda.gov/scripts/cder/daf/ and www.ema.europa.eu/en/medicines (accessed 9 March 2022).

# Therapeutic drug monitoring for a personalized medicine approach in ulcerative colitis



Therapeutic drug monitoring



### Blood concentrations<sup>1</sup>

- Active metabolites
- Anti-TNF-α drug
- Anti-drug antibodies



E.g. Higher serum induction/trough concentrations of infliximab and adalimumab are associated with endoscopic healing and clinical remission<sup>1</sup>



Dose optimization, to improve response rates and prevent secondary loss of response, by targeting drug concentrations that are considered to be in the optimal therapeutic range<sup>2</sup>





# How might emerging therapy options in UC impact current clinical practice?

### Prof. Brian G Feagan

Professor of Medicine,
Division of Gastroenterology and Hepatology,
University of Western Ontario,
London, ON, Canada





# Considerations for the development of new therapies in moderate-to-severe UC



#### **Effectiveness of current therapies**

- Approximately a third of patients with IBD do not respond to biologic therapy<sup>1</sup>
- A substantial proportion of responders to biologic agents lose response over time<sup>1</sup>



### **Drug delivery**

- Parenteral delivery is burdensome for patients and may result in decreased persistence with therapy<sup>1</sup>
- Small molecules can be administered orally;<sup>1</sup> however, non-adherence to oral therapies can be an issue in IBD<sup>3</sup>



### Safety issues with current therapies

- Biologics are associated with an increased risk of serious infections<sup>1</sup>
- Carcinogenic risk with azathioprine<sup>2</sup>



#### Cost

 Substantial treatment costs associated with biologic agents (direct and indirect)<sup>1</sup>



### **Emerging therapies in UC<sup>1</sup>**

| Drug class               | Agent                                     | Target                                                                            | Delivery                   | Stage of clinical development                                                  |
|--------------------------|-------------------------------------------|-----------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------|
| JAK inhibitor            | Tofacitinib Filgotinib Upadacitinib       | JAK1/JAK3<br>JAK1<br>JAK1                                                         | Oral<br>Oral<br>Oral       | FDA approved EMA approved <sup>2</sup> * Phase III recruiting                  |
| S1P receptor modulator   | <b>Ozanimod</b><br>Etrasimod              | S1PR1 and S1PR5<br>S1PR1, S1PR4 and S1PR5                                         | <b>Oral</b><br>Oral        | FDA <sup>3</sup> and EMA <sup>4†</sup> approved Phase III recruiting           |
| Anti-trafficking therapy | Vedolizumab<br>Etrolizumab<br>AJM300      | $\alpha$ 4β7 integrin $\alpha$ 4β7 and $\alpha$ Εβ7 integrins $\alpha$ 4 integrin | SC<br>SC<br>Oral           | EMA approved <sup>5†</sup> Phase III completed Phase III recruiting            |
| IL-23 inhibitor          | Risankizumab<br>Mirikizumab<br>Guselkumab | IL-23/p19 subunit<br>IL-23/p19 subunit<br>IL-23/p19 subunit                       | IV, SC<br>IV, SC<br>IV, SC | Phase III enrolling by invitation Phase III recruiting Phase II/III recruiting |

Table adapted from Al-Bawardy B, et al. 2021. Agents approved for UC or in current phase III development included.

<sup>1.</sup> Al-Bawardy B, et al. Front Pharmacol. 2021;12:651415; 2. EMA. Filgotinib SmPC. Revised 2021; 3. FDA. Ozanimod Pl. Revised 2021; 4. EMA. Ozanimod SmPC. Revised 2021. 5. EMA. Vedolizumab SmPC. Revised 2022. Pl and SmPC available via the FDA and EMA, respectively at: <a href="https://www.accessdata.fda.gov/scripts/cder/daf/">www.accessdata.fda.gov/scripts/cder/daf/</a> and <a href="https://www.accessdata.fda.gov/scripts/cd



<sup>\*</sup>Approved for patients with moderate-to-severe ulcerative colitis who have had an inadequate response, lost response or were intolerant to conventional or biologic therapy.<sup>2</sup>

<sup>†</sup>In patients with moderate to severely active disease who have failed on, or are intolerant to, standard treatments or biological agents.

EMA, European Medicines Agency; FDA, Food and Drug Administration; IL, interleukin; IV, intravenous; JAK, Janus kinase; PI, prescribing information; S1P, sphingosine 1-phosphate; S1PR, sphingosine 1-phosphate receptor; SC, subcutaneous; SmPC, summary of product characteristics; UC, ulcerative colitis.

### JAK inhibitors in moderate-to-severe UC

Broad spectrum immunosuppressants: Optimal dosing needed to minimize immunosuppression and achieve efficacy<sup>1</sup>

#### Tofacitinib<sup>2\*</sup>

Three phase III trials in moderate-to-severe UC:

- OCTAVE Induction 1 (N=598)
- OCTAVE Induction 2 (N=541)
- OCTAVE Sustain (N=593)



8-week remission vs **8.2**% with placebo; p=0.007 (OCTAVE Induction 1)



8-week remission vs **3.6%** with placebo; p<0.001 (OCTAVE Induction 2)



52-week remission vs **11.1%** with placebo; p<0.001 (OCTAVE Sustain)

### Safety (tofacitinib vs placebo)<sup>2</sup>

- Higher rates of overall infections, non-melanoma skin cancer, and cardiovascular events reported
- Increased lipid levels

↑ risk of cancers and MACE with tofacitinib in RA<sup>3</sup>†



<sup>\*</sup>Data presented for the 10-mg approved dose.

<sup>†</sup>Vs tumour necrosis factor inhibitors.3

JAK, Janus kinase; MACE, major adverse cardiovascular events; RA, rheumatoid arthritis; UC, ulcerative colitis.

<sup>1.</sup> Nash P, et al. Ann Rheum Dis. 2021;80:71–87; 2. Sandborn W, et al. N Engl J Med. 2017;376:1723–36; 3. Ytterberg S, et al. N Engl J Med 2022;386:316–26.

### JAK inhibitors in moderate-to-severe UC

Broad spectrum immunosuppressants: Optimal dosing needed to minimize immunosuppression

and achieve efficacy<sup>1</sup>

#### Upadacitinib<sup>2</sup>

Phase IIb trial in moderate-to-severe UC\*:

- N=250
- 1º endpoint: % of patients in remission at week 8†

8.5% 7.5 mg vs **0.0%** with placebo; p=0.052

14.3% 15 mg vs **0.0%** with placebo; p=0.013

13.5% 30 mg vs **0.0%** with placebo; p=0.011

19.6% 45 mg vs **0.0%** with placebo; p=0.002

#### Safety

- Upadacitinib was well tolerated
- Frequency of AEs of special interest was generally low (<5%) in the upadacitinib groups with the exception of anaemia, hepatic disorder and creatine phosphokinase elevation

Phase III, long-term safety and efficacy trial currently enrolling patients (NCT03006068)



<sup>\*</sup>In patients with an inadequate response, loss of response, or intolerance to corticosteroids, immunosuppressive agents, and/or biologic therapies.

<sup>†</sup>Clinical remission according to the adapted Mayo score.

AE, adverse event; JAK, Janus kinase; UC, ulcerative colitis.

<sup>1.</sup> Nash P, et al. Ann Rheum Dis. 2021;80:71–87; 2. Sandborn W, et al. Gastroenterology. 2020;158:2139–49.

### JAK inhibitors in moderate-to-severe UC

Broad spectrum immunosuppressants: Optimal dosing needed to minimize immunosuppression and achieve efficacy<sup>1</sup>



### Safety

 Filgotinib was well tolerated, with incidence of SAEs and AEs of interest similar between treatment groups



### S1PR modulators in moderate-to-severe UC

Target lymphocyte recirculation through blockade of lymphocyte egress from lymph nodes<sup>1</sup>

#### **Ozanimod**

### Trials in moderate-to-severe UC:

- Phase II TOUCHSTONE (N=197)<sup>2</sup>
- Phase III TRUE NORTH (N=1,012)<sup>3</sup>

FDA and EMA approved based on pivotal TRUE NORTH trial<sup>4,5</sup>

10-week remission vs **6.0%** with placebo; p<0.001 (induction)<sup>3</sup>

52-week remission vs **18.5**% with placebo; p<0.001 (maintenance)<sup>3</sup>

### Safety<sup>3</sup>

37.0%

- Incidence of infection was similar to placebo during induction and higher than placebo during maintenance
- Elevated liver aminotransferase levels more common with ozanimod

Cases of PML with S1PR modulators in MS have been reported, but the risk is considered extremely low<sup>6</sup>

EMA, European Medicines Agency; FDA, US Food and Drug Administration; MS, multiple sclerosis; PML, progressive multifocal leukoencephalopathy; S1PR, sphingosine 1-phosphate receptor; UC, ulcerative colitis.



<sup>1.</sup> Argollo M, et al. Expert Opin Biol Ther. 2020;20:413–20; 2. Sandborn W, et al. N Engl J Med. 2016;374:1754–62; 3. Sandborn W, et al. N Engl J Med. 2021;385:1280–91;

<sup>4.</sup> FDA. Ozanimod Pl. Revised 2021; 5. EMA. Ozanimod SmPC. Revised 2021; 6. Sriwastava S, et al. J Neurol. 2022;269:1678–87.

### S1PR modulators in moderate-to-severe UC

Target lymphocyte recirculation through blockade of lymphocyte egress from lymph nodes<sup>1</sup>

#### Etrasimod<sup>2</sup>

### Trials in moderate-to-severe UC:

- Phase II (N=156)
- Phase III ELEVATE UC 12 (NCT03996369; N=354)

33.0%

12-week remission with 2-mg dose vs **8.1**% with placebo; p<0.001<sup>2</sup>

41.8%

12-week endoscopic improvement with 2-mg dose vs **17.8%** with placebo; p=0.003<sup>2</sup>

### Safety<sup>2</sup>

 Most common AEs were worsening of UC, respiratory tract infections, nasopharyngitis and anaemia in all groups

Phase III trials of etrasimod in UC are currently ongoing or recruiting: ELEVATE UC 52 (NCT03945188), ELEVATE UC OLE (NCT03950232) and NCT04176588

