SYMPOSIUM

IgG4-related disease:How to identify, diagnose and treat

Approved for

AMA PRA

Category 1

Credit™

Disclaimer

- Unapproved products or unapproved uses of approved products may be discussed by the faculty; these situations may reflect the approval status in one or more jurisdictions
- The presenting faculty have been advised by USF Health and touchIME to ensure that they disclose any such references made to unlabelled or unapproved use
- No endorsement by USF Health and touchIME of any unapproved products or unapproved uses is either made or implied by mention of these products or uses in USF Health and touchIME activities
- USF Health and touchIME accept no responsibility for errors or omissions

. Agenda

Introduction and welcome

Prof. John Stone

The many faces of IgG4-related disease

Prof. John Stone

From suspicion to confirmation of IgG4-related disease

Dr Emanuel Della Torre

A new era for treating IgG4-related disease

Dr Arezou Khosroshahi

Panel discussion

All faculty

Meeting summary and close

Prof. John Stone

Each session will include interactive audience polling and audience Q&As. The panel discussion will include a patient case.

Learning objectives

Describe the complex pathophysiology and clinical manifestations of IgG4-related disease

2 Outline the diagnostic and classification criteria for IgG4-related disease

Discuss current treatments for IgG4-related disease as well as novel, emerging targeted treatment options

Expert panel

Prof. John Stone (Chair)
Harvard Medical School and
Massachusetts General Hospital
Boston, MA, USA

Dr Emanuel Della Torre
Vita-Salute San Raffaele University
and San Raffaele Hospital
Milan, Italy

Dr Arezou Khosroshahi Emory University School of Medicine Atlanta, GA, USA

The many faces of IgG4-related disease

Prof. John Stone
Harvard Medical School and
Massachusetts General Hospital
Boston, MA, USA

IgG4-RD was first identified in 2003¹

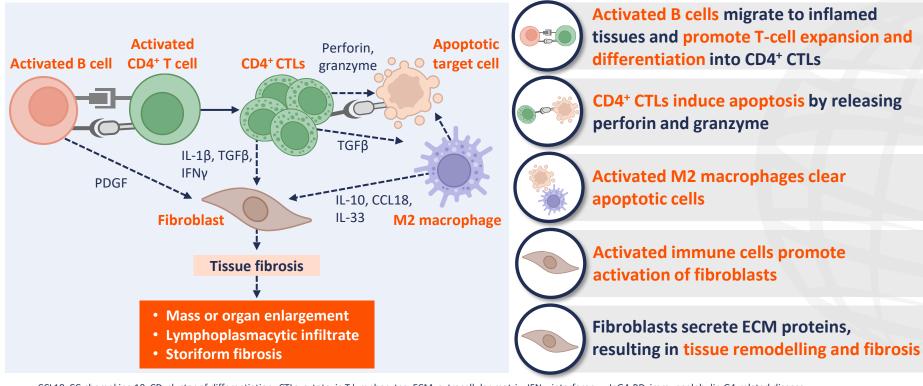
True prevalence is unknown²

Immune-mediated progressive condition^{1–3}

Average age at diagnosis is 50–70 years old²

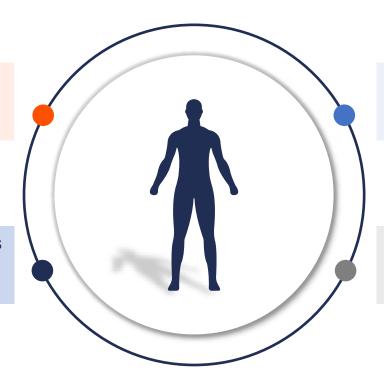
Relapsing—remitting disease course²

Male predominance²



Smoking is the only established modifiable risk factor²

Pathogenesis of IgG4-RD leads to tissue fibrosis

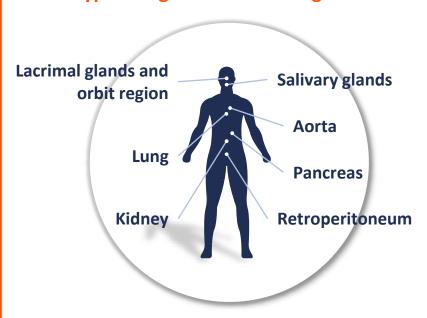


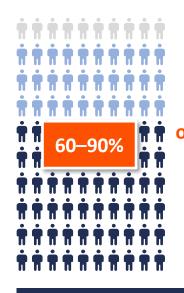
CCL18, CC-chemokine 18; CD, cluster of differentiation; CTLs, cytotoxic T lymphocytes; ECM, extracellular matrix; IFNγ, interferon-γ; IgG4-RD, immunoglobulin G4-related disease; IL, interleukin; PDGF, platelet-derived growth factor; TGFβ, transforming growth factor-β. Perugino CA, Stone JH. *Nat Rev Rheumatol*. 2020;16:702–14.

. Clinical presentation of IgG4-RD is heterogeneous¹

Typically presents in an indolent fashion¹

Most common presentation is a mass lesion or organ enlargement²


Mass lesions are frequently mistaken for malignancy¹


Symptoms are typically attributable to tumefactive or inflammatory lesion(s)³

igG4-RD can affect nearly any organ¹

Typical organs involved in IgG4-RD²

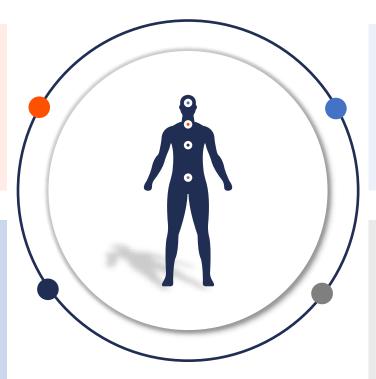
of patients have multiple organs affected³

Symptoms vary depending on organs or tissues involved⁴

IgG4-RD, immunoglobulin G4-related disease.

1. Tanaka Y, Stone JH. Mode Rheumatol. 2023;33:229–36; 2. Chen Y, et al. Chin Med J (Engl). 2022;135:381–92; 3. Bhardwaj S, et al. J Postgrad Med. 2018;64:119–22;

4. Al-Khalili O, et al. Mo Med. 2018;115:253-56.


Clinical manifestations vary by organ(s) involved

Head and neck

Dacryoadenitis, dacryocystitis, orbital myositis, orbital pseudotumour, uveitis, scleritis | sialoadenitis | chronic nasorhinosinusitis | Riedel thyroiditis | vocal cord lesions, supraglottic stenosis

Chest

Parenchymal lung disease, pleural disease, lymphadenopathy | pericarditis, coronary arteritis, pseudotumour | fibrosing mediastinitis, paravertebral mass | aortitis, periaortitis

Pituitary and nervous system

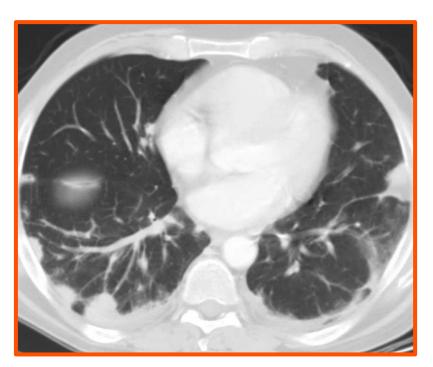
Hypophysitis | hypertrophic pachymeningitis | vague dysesthesias over the cheek | asymptomatic

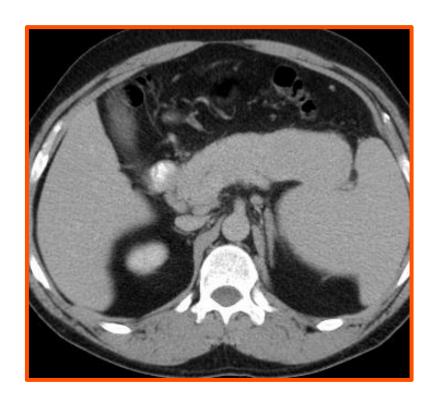
Abdomen and pelvis

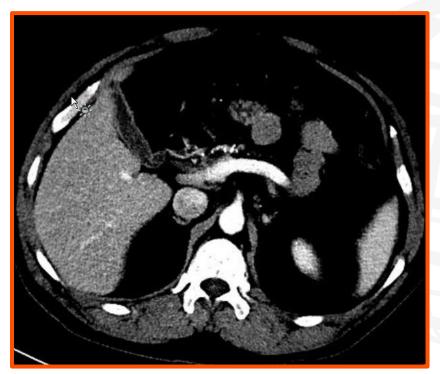
AIP type I, pseudotumour | sclerosing cholangitis, sclerosing cholecystitis, pseudotumour | sclerosing mesenteritis | aortitis and periaortitis, retroperitoneal fibrosis | tubulointerstitial nephritis, membranous GN | prostatitis

. Submandibular gland disease

'Idiopathic orbital inflammation'


Extra-ocular muscle involvement


Pulmonary nodules, pleural effusions, airway thickening



. Autoimmune pancreatitis

. Retroperitoneal fibrosis and periaortitis

Hydronephrosis, stents, nephrostomy tubes

IgG4-RD has noticeable patterns of involvement¹

Atopy

Allergic symptoms common in those with head and neck involvement¹

Elevated serum IgE levels

Role of allergies in IgG4-RD is unclear²

and eosinophilia¹

Constitutional symptoms¹

Prominent constitutional symptoms are atypical

Fever is a highly atypical symptom

Substantial weight loss may occur in AIP type 1

Two subtypes of IgG4-RD have been described

Proliferative subtype¹

Multiorgan involvement

Glandular tissues, pancreas, bile ducts, kidneys, lungs, sinuses and lymph nodes

IgG4: ↑

IgE: ↑

🥍 lgG1: 🔨

Eosinophils: ↑

Complement levels: ****

Treatment responsive

Fibrotic subtype¹

Single or multiorgan involvement

Retroperitoneum, mesentery, mediastinum, pachymeninges and thyroid

IgG4: Normal

IgE: Normal

IgG1: Normal

Eosinophils: Not characteristic

Hypocomplementemia: Not characteristic

Limited treatment response

Biological differences between these subtypes remains uncertain²

^{1.} Katz G, Stone JH. Annu Rev Med. 2022;73;545–62; 2. Tanaka Y, Stone JH. Modern Rheumatology. 2023;33:229–36.

Summary

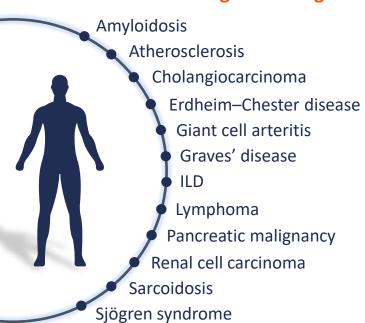
IgG4-RD was recognized as a distinct autoimmune disease two decades ago^{1,2}

IgG4-RD is an insidiously progressive disease typified by tumour-like mass formation in many organs²

Typical organs affected by IgG4-RD are the lacrimal glands, major salivary glands, orbits, lungs, paravertebral soft tissue, pancreas, biliary tree, kidneys, retroperitoneum, aorta, meninges and thyroid gland¹

Expanding knowledge of the pathophysiology of IgG4-RD offers the possibility of **novel therapeutic approaches**²

From suspicion to confirmation of IgG4-related disease



Dr Emanuel Della TorreVita-Salute San Raffaele University and
San Raffaele Hospital
Milan, Italy

IgG4-RD represents a diagnostic challenge

Some differential diagnoses of IgG4-RD1

Elevated serum IgG4 levels are not essential for diagnosis^{2–4}

No specific single marker or clinical feature for a definitive diagnosis⁵

Ig, immunoglobulin; IgG4-RD, IgG4-related disease; ILD, interstitial lung disease.

1. Katz G, Stone JH. Annu Rev Med. 2022;73;545–62; 2. Löhr J-M, et al. United European Gastroenterol J. 2020;8:637–66; 3. Wallace ZS, et al. Arthritis Rheumatol. 2020;72:7–19;

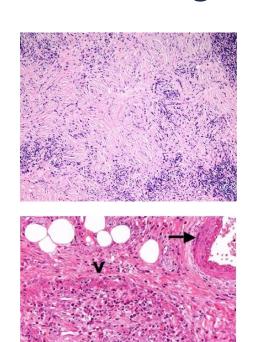
4. Abraham M, Khosroshahi A. Expert Rev Clin Immunol. 2017;13:867–75; 5. Olmos RD, et al. Autops Case Rep. 2021;11:e2021312.

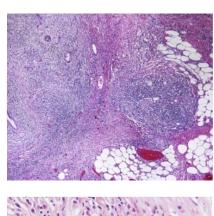
Definitive diagnosis requires histological confirmation

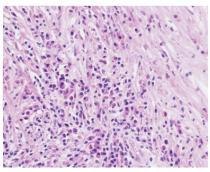
Storiform fibrosis

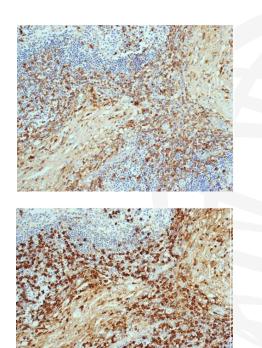
Lymphoplasmacytic infiltrate

IgG4-positive plasma cells

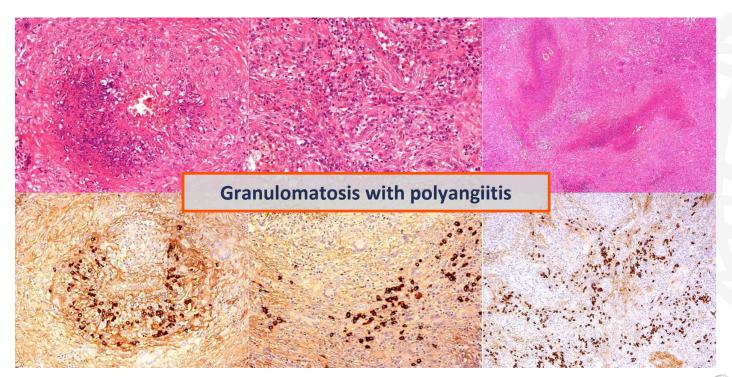

Obliterative phlebitis


Eosinophilic infiltrate


IgG4/IgG plasma cells >40%

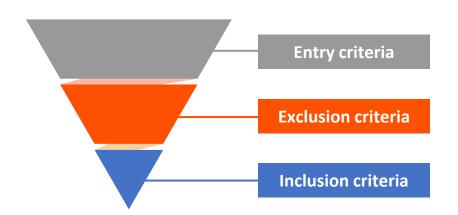


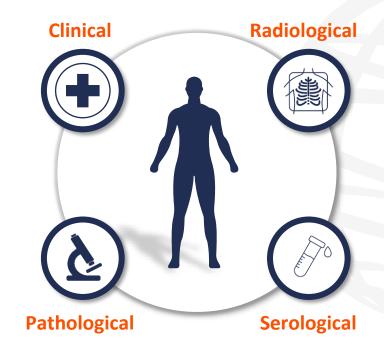
Definitive diagnosis requires histological confirmation



Definitive diagnosis requires histological confirmation

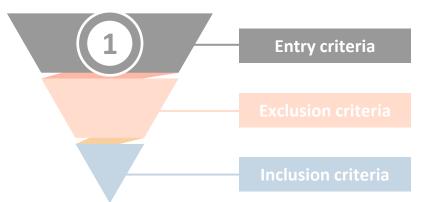
Histological analysis of a pulmonary lesion

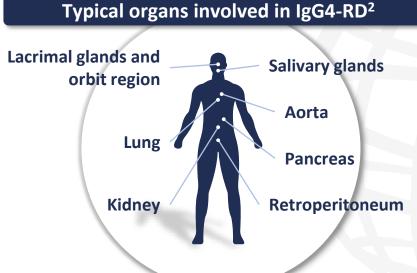




. Three-step classification criteria based on four domains

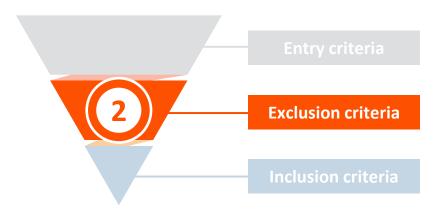
The 2019 ACR and EULAR classification criteria





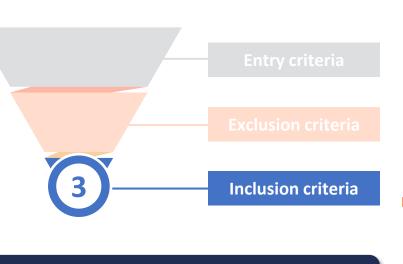
. Three-step classification criteria for IgG4-RD: Entry

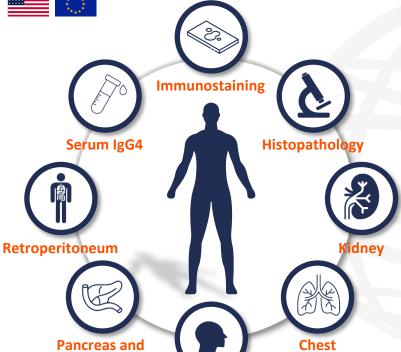
The 2019 ACR and EULAR classification criteria¹



. Three-step classification criteria for IgG4-RD: Exclusion

The 2019 ACR and EULAR classification criteria


Presence of any exclusion criteria rules out an IgG4-RD diagnosis



. Three-step classification criteria for IgG4-RD: Inclusion

The 2019 ACR and EULAR classification criteria

A weighted score of ≥20 points across 8 domains fulfils classification criteria

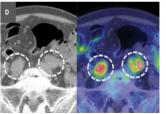
Head and neck

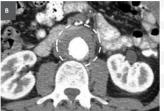
biliary tree

ACR, American College of Rheumatology; EULAR, European League Against Rheumatism; Ig, immunoglobulin; IgG4-RD, IgG4-related disease. Wallace ZS, et al. *Arthritis & Rheumatol.* 2020;72:7–19.

Inclusion criteria: Organ involvement

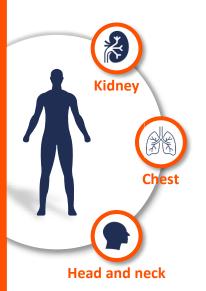
The 2019 ACR and EULAR classification criteria





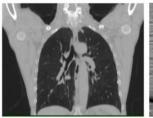
Retroperitoneum	Score
Diffuse thickening of abdominal aortic wall	+4
Circumferential or anterolateral soft tissue around the infrarenal aorta or iliac arteries	+8

Pancreas and biliary tree	Score
Diffuse pancreas enlargement	+8
Diffuse pancreas enlargement AND capsule-like rim with decreased enhancement	+11
Pancreas (either of above) and biliary tree involvement	+19



Inclusion criteria: Organ involvement

The 2019 ACR and EULAR classification criteria


Kidney	Score
Hypocomplementemia	+6
Renal pelvis thickening/soft tissue	+8
Bilateral renal cortex low- density areas	+10

Chest	Score
Peribronchovascular and septal thickening	+4
Paravertebral band-like soft tissue in the thorax	+8

Head and neck: Glands involved	Score
1 set	+6
≥2 sets	+14

The 2020 RCD criteria for IgG4-RD

Developed by a Japanese IgG4 multidisciplinary team organized by the MHLW of Japan

One or more organs with characteristics of IgG4-RD:

Diffuse/localized swelling or a mass or nodule In single organ involvement, lymph node swelling is omitted

Serological

Serum IgG4 levels >135 mg/dL

Pathological

- 1. Dense lymphocyte and plasma cell infiltration with fibrosis
- 2. IgG4+ plasma cells/IgG+ cells >40% AND IgG4+ plasma cells >10/hpf
- 3. Typical tissue fibrosis, particularly storiform fibrosis, or obliterative phlebitis

The 2020 RCD criteria for IgG4-RD: Possible

Developed by a Japanese IgG4 multidisciplinary team organized by the MHLW of Japan

Clinical and radiological

One or more organs with characteristics of IgG4-RD:

• Diffuse/localized swelling or a mass or nodule
In single organ involvement, lymph node swelling is omitted

Serological

Serum IgG4 levels >135 mg/dL

Pathological

- 1. Dense lymphocyte and plasma cell infiltration with fibrosis
- 2. IgG4+ plasma cells/IgG+ cells >40% AND IgG4+ plasma cells >10/hpf
- **3. Typical tissue fibrosis,** particularly storiform fibrosis, or obliterative phlebitis

'The 2020 RCD criteria for IgG4-RD: Probable

Developed by a Japanese IgG4 multidisciplinary team organized by the MHLW of Japan

One or more organs with characteristics of IgG4-RD:

Diffuse/localized swelling or a mass or nodule In single organ involvement, lymph node swelling is omitted

Serological

Serum IgG4 levels >135 mg/dL

Pathological

- 1. Dense lymphocyte and plasma cell infiltration with fibrosis
- IgG4+ plasma cells/IgG+ cells >40% AND IgG4+ plasma cells >10/hpf
- 3. Typical tissue fibrosis, particularly storiform fibrosis, or obliterative phlebitis

The 2020 RCD criteria for IgG4-RD: Definite

Developed by a Japanese IgG4 multidisciplinary team organized by the MHLW of Japan

Clinical and radiological

One or more organs with characteristics of IgG4-RD:

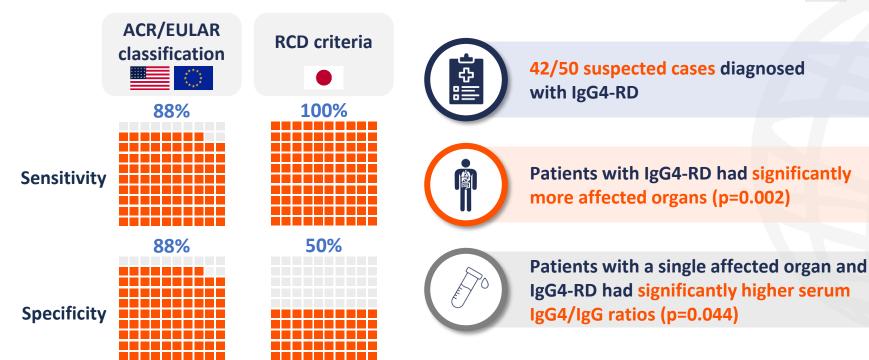
• Diffuse/localized swelling or a mass or nodule
In single organ involvement, lymph node swelling is omitted

Serological

9

Serum IgG4 levels >135 mg/dL

Pathological



- 1. Dense lymphocyte and plasma cell infiltration with fibrosis
- 2. IgG4+ plasma cells/IgG+ cells >40% AND IgG4+ plasma cells >10/hpf
- **3. Typical tissue fibrosis,** particularly storiform fibrosis, or obliterative phlebitis

Diagnostic criteria in practice: Japanese experience

Retrospective, single-centre study (N=50) of patients with suspected IgG4-RD

Summary

Even with a high level of clinical suspicion, diagnosing IgG4-RD can be challenging^{1,2}

Definitive diagnosis of IgG4-RD requires **histological confirmation**²

The three-step ACR/EULAR classification criteria for IgG4-RD includes entry, exclusion and inclusion criteria³

Japanese revised IgG4-RD diagnostic criteria consists of three domains: Clinical and radiological features; serological diagnosis; and pathological diagnosis⁴

^{1.} Díaz Olmos R, et al. Autops Case Rep. 2021;11:e2021312; 2. laccarino L, et al. RMD Open. 2019;4:e000787; 3. Wallace ZS, et al. Arthritis & Rheumatol. 2020;72:7–19;

A new era for treating IgG4-related disease

Dr Arezou Khosroshahi Emory University School of Medicine Atlanta, GA, USA

Effective management of IgG4-RD

Induction

with GCs^{1,2}

Maintenance

with low-dose GCs, immunosuppression, rituximab (under investigation)^{1,2}

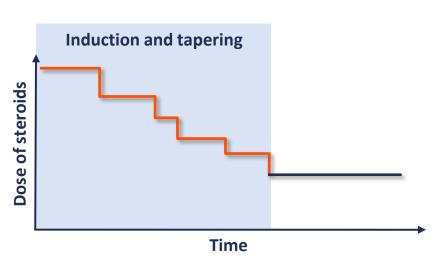
Monitor

biomarkers of IgG4-RD activity e.g. serum IgG4 levels³ Management should factor in the natural history of IgG4-RD

Occasional spontaneous remission⁴

Indolent, progressive organ involvement^{5,6}

Additional organ involvement over time⁶


Irreversible damage of vital organs^{6,7}

GC, glucocorticoid; Ig, immunoglobulin; IgG4-RD, IgG4-related disease.

1. Abraham M, Khosroshahi A. Expert Rev Clin Immunol. 2017;13:867–75; 2. Lanzillotta M, et al. Expert Rev Clin Immunol. 2021;17:471–83; 3. laccarino L, et al. Clin Exp Rheumatol. 2022;40 Suppl 134:71–80; 4. Brito-Zerón P, et al. Medicine. 2016;95:e4002; 5. Al-Khalili O, et al. Mo Med. 2018;115:253–56; 6. Katz G, Stone JH. Ann Rev Med. 2022;73;545–62; 7. Karim F, et al. Pediatr Rheumatol Online J. 2016;14:18.

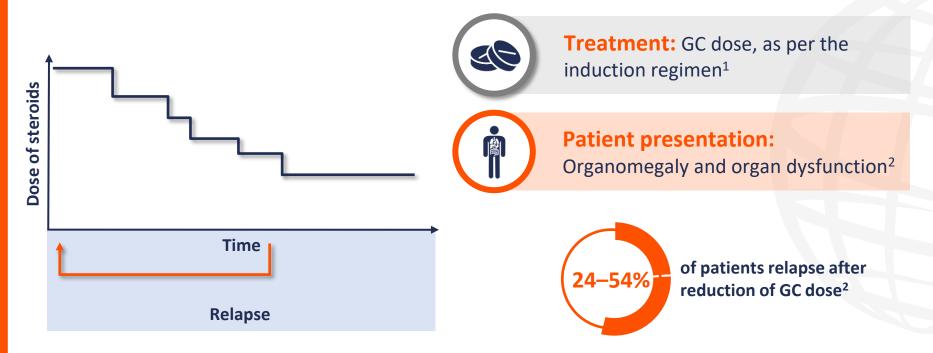
GCs are the cornerstone of IgG4-RD treatment

Treatment goals: Reduce inflammation and preserve organ function¹

Induction: 30–40 mg/day prednisone, maintained for 4 weeks¹

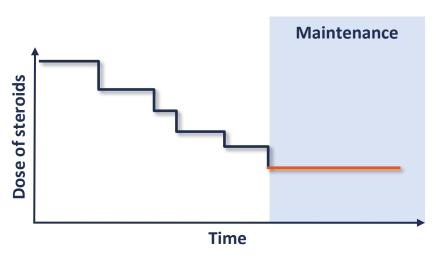
Tapering: GC dose is then gradually tapered over 8–12 weeks²

of patients have a therapeutic response to GC monotherapy³


GC, glucocorticoid; IgG4-RD, immunoglobulin G4-related disease.

1. Tanaka Y, Stone JH. Mod Rheumatol. 2023;33:229-36; 2. Abraham M, Khosroshahi A. Expert Rev Clin Immunol. 2017;13:867-75;

3. Brito-Zerón P, et al. Medicine. 2016;95:e4002.


Relapses are common following steroid tapering

Maintenance therapy with low-dose GCs¹

Treatment goal: Maintain remission³

Long-term GC treatment

is associated with adverse effects²

Maintenance: GCs +

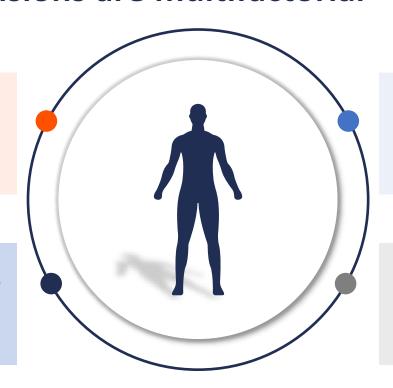
immunosuppressants; but evidence for their efficacy remains slim³

Maintenance: Use targeted therapy;

B cell depletion (off-label)⁴

^{1.} Abraham M, Khosroshahi A. Expert Rev Clin Immunol. 2017;13:867–75; 2. Nakaymada S, Tanaka Y. Modern Rheumatol. 2023;33:266–70;

3. Tanaka Y, Stone JH. Modern Rheumatology. 2023;33:229–36; 4. Lanzillotta M, et al. Mod Rheumatol. 2023;33:258–65.



. Treatment decisions are multifactorial

Disease-related factors

Disease subtype e.g. inflammatory or fibrotic¹

Clinical disease phenotype e.g. isolated organ vs multisystemic^{2,3}

Urgency of presentation

e.g. biliary stricture vs lymphadenopathy^{2,4}

Predictors of relapse

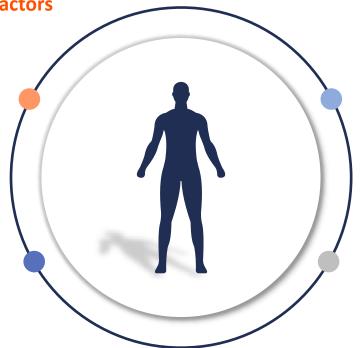
e.g. multi-organ disease, prior flare, serum IgG4 levels
>2 x ULN, ↑ serum IgE,
peripheral eosinophilia⁵⁻⁷

^{↑,} elevated; Ig, immunoglobulin; IgG4-RD, IgG4-related disease; ULN, upper limit of normal.

^{1.} Tanaka Y, Stone JH. Mod Rheumatol. 2023;33:229–36; 2. Lee C, Hung To C, et al. J Clin Rheumatol. 2023;23:25–34; 3. Chen Y, et al. Chin Med J (Engl). 2022;135:381–92;

^{4.} Goodchild G, et al. Clinical Medicine. 2020;20:e32–9; 5. Zongfei J, et al. Arthritis Res Ther. 2022;24:106; 6. Wallace ZS, et al. Rheumatology (Oxford). 2016;55:1000–8;

^{7.} Perugino C, et al. Rheumatol Ther. 2023.10:1795–808.


Treatment decisions are multifactorial

Patient- and social-related factors

Age

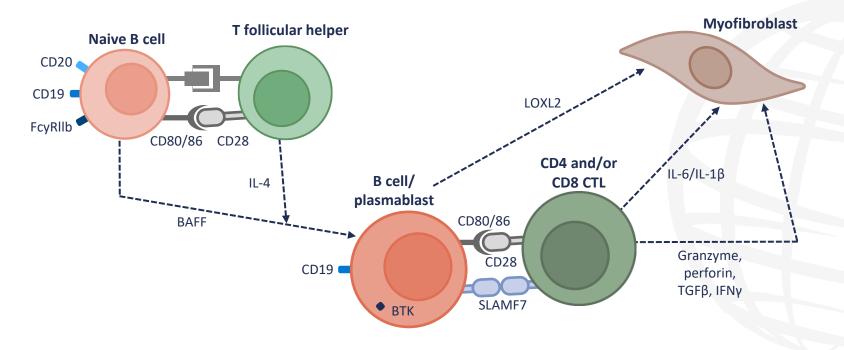
e.g. IgG4-RD affects middle aged and elderly individuals, but can also affect children¹

Comorbidities e.g. diabetes²

Public health factors e.g. pandemic³

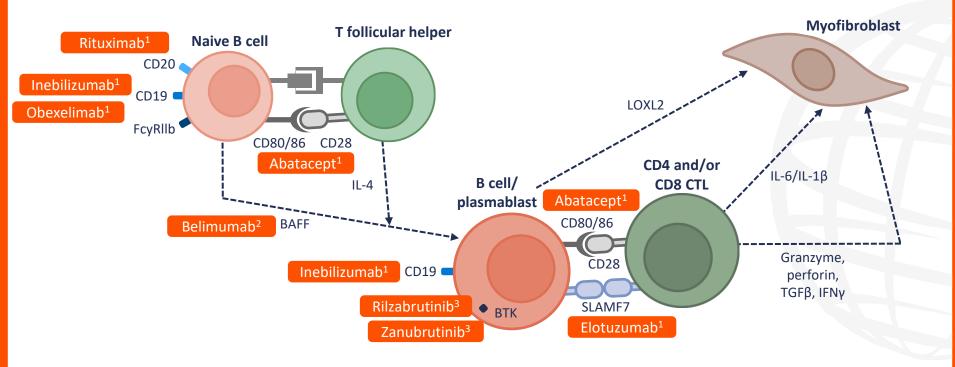
Insurance coverage

e.g. whether treatment is covered in full⁴

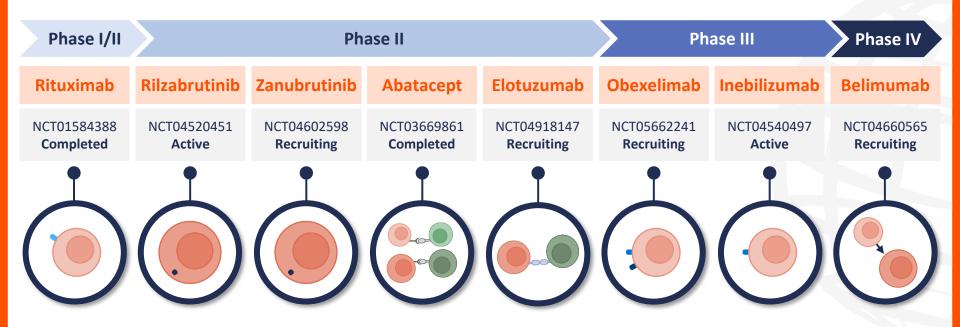

IgG4-RD, immunoglobulin G4-related disease.

1. Chen C, et al. Exp Ther Med. 2018;15:2739–48; 2. Regev K, et al. JAMA Neurol. 2014;71:767–70; 3. Chen Y, et al. Semin Arthritis Rheum. 2020;50:559–63;

4. Dawkins B, et al. *Trop Med Int Health*. 2021;26:1177–88.


New treatments target IgG4-RD pathophysiology^{1–3}

New treatments target IgG4-RD pathophysiology^{1–3}



BAFF, B-cell activating factor; BTK, Bruton's tyrosine kinase; CD, cluster of differentiation; CTL, cytotoxic T lymphocytes; IgG4-RD, immunoglobulin G4-related disease; IFNγ, interferon-γ; IL, interleukin; LOXL2, lysyl oxidase homolog 2; SLAMF7, surface antigen CD319; TGFβ, transforming growth factor-β.

1. Lanzillotta M, et al. *Br Med J.* 2020;369:m1067; 2. Lanzillotta M, et al. *Expert Rev Clin Immunol.* 2021;17:471–83; 3. Lanzillotta M, et al. *Mod Rheumatol.* 2023;33:258–65.

Novel targeted agents are in clinical development¹⁻³

Summary

Treatment decisions should be individualized based on the natural history of IgG4-RD, as well as patient- and disease-specific factors^{1–3}

GCs remain the cornerstone for inducing disease remission⁴

Advances in understanding the pathogenesis of IgG4-RD has prompted the **development of novel targeted agents** that may provide steroid-sparing options in the future^{4,5}

Life-long follow-up of patients with IgG4-RD is advisable⁶

GC, glucocorticoid; IgG4-RD, immunoglobulin G4-related disease.

- 1. Weiss MA, et al. Am J Case Rep. 2018;19:1232–36; 2. Goodchild G, et al. Clinical Medicine. 2020;20:e32–9; 3. Wallace ZS, et al. Clin Chest Med. 2019;40: 583–97;
- 4. Perguino CA, Stone JH. Z Rheumatol. 2016;75:681–6; 5. Abraham M, Khosroshahi A. Expert Rev Clin Immunol. 2017;13:867–75;
- 6. Löhr J-M, et al. United European Gastroenterol J. 2020;8:637-66.

Prof. John Stone (Chair)
Harvard Medical School and
Massachusetts General Hospital
Boston, MA, USA

Panel discussion

Dr Emanuel Della Torre
Vita-Salute San Raffaele University
and San Raffaele Hospital
Milan, Italy

Dr Arezou Khosroshahi Emory University School of Medicine Atlanta, GA, USA

Patient case: Presentation

George

Age: 60 years **Sex:** Male

Presentation: Sudden onset of abdominal pain, jaundice and weight loss. Has a medical history of multiple allergies

Patient case: Diagnostic tests

George

Age: 60 years **Sex:** Male

Serology: Laboratory assessment showed abnormal liver

function tests and elevated CA 19-9.

Radiology: Abdominal ultrasound demonstrated extensive biliary ductal dilatation. CT/MRI/MRCP revealed a 4.6 cm

pancreatic head mass.

Patient case: Diagnostic tests

Q

George

Age: 60 years **Sex:** Male

Serology: Laboratory assessment showed abnormal liver

function tests and elevated CA 19-9.

Radiology: Abdominal ultrasound demonstrated extensive biliary ductal dilatation. CT/MRI/MRCP revealed a 4.6 cm pancreatic head mass.

What additional tests would you perform?

- a. Biopsy to detect malignant cells; immunostain for IgG4
- b. Measure response to high-dose prednisone
- c. Measure serum IgG4 levels
- d. PET-CT to detect pancreatic and extra-pancreatic lesions

