touchIMMUNOLOGY touchIMMUNOLOGY
Rheumatoid Arthritis
Read Time: 16 mins

Interleukin 6 Inhibition in Rheumatoid Arthritis: Highlight on Olokizumab

Copy Link
Published Online: Apr 6th 2023 touchREVIEWS in RMD. 2023;2(1):17–27 DOI: https://doi.org/10.17925/RMD.2023.2.1.17
Authors: Eugen Feist, Evgeny Nasonov
Quick Links:
Abstract
Article
Article Information
Abstract:
Overview

Rheumatoid arthritis (RA) is a chronic immunoinflammatory rheumatic disease, which manifests as progressive destruction of joints, systemic inflammation of visceral organs and a wide range of comorbidities associated with chronic inflammation. Among the cytokines involved in the pathogenesis of RA and certain other immunoinflammatory rheumatic diseases, the role of interleukin (IL) 6 is of special interest. The introduction of the monoclonal antibodies tocilizumab and later sarilumab, both of which block the IL-6 receptor, into clinical practice was an important achievement in the treatment of immunoinflammatory rheumatic diseases at the beginning of the 21st century. The humanized monoclonal antibody against IL-6, olokizumab, provides a new mode of action by direct inhibition of IL-6. This article reviews new data on the efficacy and safety of olokizumab in RA and the prospects of its use in rheumatology.

Keywords

Biological disease-modifying antirheumatic drugs, disease-modifying antirheumatic drugs, interleukin 6, interleukin 6 inhibitors, monoclonal antibodies, olokizumab, rheumatoid arthritis, tocilizumab

Article:

Article highlights

  • Treatment of rheumatoid arthritis remains a challenge, and new interleukin (IL) 6 inhibitors deserve special attention.

  • IL-6 provides pleiotropic effects not only on the pathogenesis of rheumatoid arthritis but also on its comorbidities.

  • The humanized monoclonal antibody olokizumab has special mode of action by directly suppressing IL-6 (site III).

  • The safety and efficacy of olokizumab were confirmed in large international randomized trials both in biologically naïve patients and in patients with resistance to tumour necrosis factor alpha inhibitors.

Rheumatoid arthritis (RA) is a chronic immunoinflammatory rheumatic disease characterized by the progressive destruction of joints, systemic inflammation of visceral organs and a wide range of comorbidities associated with chronic inflammation.1 The RA pathogenesis is determined by complex relationship between environmental factors and genetic predisposition leading to an autoimmune response before or in parallel to the development of the clinical symptoms of the disease.2–4 Along with the development of novel drugs, the strategy of RA pharmacotherapy has been improved based on the concepts of ‘treat to target5,6 and window of opportunity7 ‘ by diagnosing RA early. This approach determines the possibility of initiating active, tightly controlled anti-inflammatory therapy with diseasemodifying antirheumatic drugs (DMARDs), primarily methotrexate and, if necessary, with subsequent biological disease-modifying antirheumatic drugs (bDMARDs).8 However, despite significant progress in the early diagnosis and treatment of RA,9 which led to a clear improvement in the prognosis for many patients, the issues with RA pharmacotherapy are far from resolved.10 This is due to heterogeneous immunopathogenic mechanisms, both at the onset and during the progression of RA, which complicates personalized therapy.

Among the cytokines involved in the pathogenesis of RA and other immunoinflammatory rheumatic diseases, interleukin (IL) 6 is of special clinical value.11-16 The introduction of the monoclonal antibodies (mAbs) tocilizumab first and then sarilumab, which inhibit the proinflammatory effects of IL-6, into clinical practice was considered a great achievement in the treatment of immunoinflammatory rheumatic diseases at the beginning of the 21st century.14

It is worth remembering that IL-6 is a protein consisting of 184 amino acids, with a molecular weight of 26 kDa, two N-glycosylated sites and four cysteine residues. IL6 was originally described as Bcell differentiation factor. The biological effects and molecular mechanisms of action of IL-6 are determined by its ability to activate the target genes regulating the differentiation, survival, apoptosis and proliferation of various immune and non-immune cells in the human body. Therefore, IL-6 acts as a pleiotropic autocrine, paracrine and hormone-like regulator of various normal and abnormal biological processes (e.g. development of all forms of acute and chronic inflammation, coordination of innate and acquired immunity, metabolism, neurodegeneration, oncogenesis)The pathogenetic effects of IL-6 and potential effects of IL-6 inhibitors are summarized in Table 117–19 and Table 2.20–40 IL-6 expression and synthesis, predominantly by myeloid cells (e.g. macrophages, dendritic cells), are regulated by various transcription factors, such as nuclear factor kappa beta, which are activated by proinflammatory cytokines (e.g. IL-1βtumour necrosis factor alpha [TNFα], IL-17) and pathogenrecognizing Toll-like receptors (Rs), and are controlled by microRNAs, RNA-binding proteins (Roquin, AT-rich interactive domain-containing 5a [Arid5a]), and RNases (Regnase-1), which are all circadian rhythm regulatorsThe physiological concentration of IL-6 is very low (15 pg/mL) but tends to increase rapidly to 1 µg/mL when inflammatory diseases (e.g. RA) or infections (e.g. sepsis, coronavirus disease 2019 [COVID-19]) are present.

Several factors determine the pleiotropic characteristics of IL-6. First, to transmit the intracellular signal, IL-6 binds to the α-chain of the heterodimeric IL-6R Cluster of Differentiation 126 (CD126)with a molecular weight of 80 kDa, forming a complex that then binds to the signal coreceptor, the transmembrane protein gp130 [130 kDa glycoprotein; IL-6Rβ]).41 Second, IL-6Rα is only expressed on the surface of certain cells (i.e. hepatocytes, neutrophils, monocytes, adipocytes, myocytes and some populations of lymphocytes), whereas gp130 is expressed by the vast majority of human cells.42 Therefore, IL-6 shows a high affinity for IL-6Rα and reacts with gp130 only as part of the IL-6IL-6Rα complex.

The existence of IL-6R in both transmembrane (membrane-bound [m]IL-6R) and soluble forms (sIL-6R) determines the three main forms of IL-6 signalling: classical signalling, trans-signalling and cluster signalling. Classical signalling is mediated by the binding of IL-6 to mIL-6R, whereas trans-signalling is mediated by the formation of the IL-6 complex with sIL-6R, which directly induces the activation of gp130 in cells not expressing mIL-6R. A new IL-6 signalling mechanism, trans-presentation (cluster signalling), has recently been characterized, whereby IL-6 binds to IL-6Rα on the membrane of specific dendritic cells and is presented to gp130 homodimer expressed on the surface of closely spaced T cells.43 This mechanism is believed to play a major role in the implementation of a pathogenic subpopulation of Th17 cells. All IL-6 signalling pathways lead to the activation of the Janus family tyrosine kinase (JAK) pathway, such as signal transducers and activators of transcription 1 (STAT 1) and STAT3, phosphoinositide 3-kinases, mitogen-activated protein kinase and AMP-activated protein kinase, regulating the synthesis of a wide range of biologically active mediators.44 Trans-signalling (and trans-presentation) is believed to be involved in the development of proinflammatory effects of IL-6, whereas classical signalling is largely involved in the physiological regulation of homeostasis and inflammation resolution.

Table 1: Pleiotropic effects of interleukin 6 potentially involved in the pathogenesis of rheumatoid arthritis and concomitant comorbidities17–19

Effects

Role in pathogenesis

Effect of IL-6 inhibition

Immune

Proinflammatory

  • Enhancement of B-cell differentiation and antibody synthesis

  • Maturation of plasmablasts to plasma cells (together with IL-10)

  • Differentiation of follicular Th cells (together with IL-21 and IL-23) activating B-cells in the germ centres

  • Differentiation of T cells towards Th2 and Th17 (together with TGFβ and IL-23), suppression of Th1 and T regulation

  • Activation of effector functions of CD8cytotoxic T cells

  • Positive and negative regulation of synthesis of acute phase proteins (e.g. CRP, SAA, fibrinogen) and body temperature

  •  Development of chronic synovitis and proliferation of fibroblast-like synoviocytes, enhancement of angiogenesis

  •  Protection against bacterial, fungal and viral infections

  •  Suppression of systemic and local inflammation and immune disorders

  •  Increased risk of infectious complications

Anti-inflammatory

  • Regulation of neutrophil traffic to inflammation site, suppression of chemokine synthesis and neutrophil apoptosis

  • Inhibition of synthesis of pro-inflammatory cytokines (TNF-α and IL-1β), enhancement of synthesis of anti-inflammatory cytokines (IL-10, IL-1Ra)

  • Polarization of macrophages towards M2 having suppressive properties (inhibition of activation and proliferation of CD4lymphocytes, formation of activated T cells)

  • Amyloidosis, fever

  • Reduced risk of amyloidosis; normalization of body temperature

  • Inadequate efficacy and development of resistance to therapy?

 Musculoskeletal

Catabolic

  •  Induction of osteoclast differentiation (induction of RANKL synthesis)

  •  Destruction of muscle fibres

Anabolic

  •  Hypertrophy of skeletal muscles by increasing proliferation and differentiation of satellite cells

  •  Destruction of cartilage, development of bone erosion and loss of bone tissue

  •  Rheumatoid cachexia

  •  Slowing down progression of cartilage destruction, bone erosion formation, BMD stabilization

  •  Building muscle mass by means of physical exercise

Haematological

  • Stimulation of synthesis of hepcidin (hormone-like peptide) inhibiting iron absorption

  • Activation of megakaryocytopoiesis by enhancing expression of thrombopoietin in hepatocytes

  • Increased neutrophil migration towards IL-8 expressing cells

  •  Anaemia of chronic inflammation

  •  Thrombocytosis

  •  Transient neutropenia

  •  Treatment of anaemia of chronic inflammation

  • Reduction of platelet count

 Neuronal

  •  Dysregulation of hypothalamuspituitaryadrenal axis (cortisol production)

  •  Increased expression of gp130 on dorsal horn neuronal cells

  •  Depression, tiredness, sleep disorders, appetite disorders

  •  Hyperalgesia

  •  Improvement in qualityoflife parameters of patients

 Cardiovascular and endocrine

  •  Activation of endothelial cells, impairment of lipid and carbohydrate metabolism

  •  Atherosclerosis, insulin resistance, risk of diabetes mellitus

  •  Increased lipid concentration

  •  Normalization of endothelium-related vasodilation and arterial stiffness

  •  Decrease in HbA1c concentration, stabilization of glucose concentration

  •  Body weight increase

BMD = bone mineral density;CRP = C-reactive protein;HbA1c = glycated haemoglobin;IL = interleukin;M2 = alternatively activated macrophage;RANKL = receptor activator of nuclear factor kappa-B ligand;SAA = serum amyloid A;TGF = Transforming growth factor;Th = T helper;TNF = tumour necrosis factor.

Table 2: The main characteristics of interleukin 6 inhibitors20–40*

Characteristics

Tocilizumab

Sarilumab

Olokizumab

Molecule

Humanized IgG1 mAb

Human mAb

Humanized IgG4 mAb

Mechanism of action

Binding to soluble and membrane IL-6R

Binding to soluble and membrane IL-6R

Binding to IL-6 site III

Routes of administration

IV, SC

SC

SC

Half-life

13 days (8 mg/kg)

10 days (200 mg)

31 days

Doses

IV

RA  8 mg/kg every 4 weeks (initial dose 4 mg/kg every 4 weeks)

pJIA – 8 or 10 mg/kg every 4 weeks

sJIA – 8 or 12 mg/kg every 2 weeks

COVID-19 – 8 mg/kg (single dose)

GCA – 6 mg/kg every 4 weeks

CRS – 8 or 12 mg/kg every 2 weeks

SC

RA, SSc-ILD and GCA – 162 mg once weekly

pJIA – 162 mg every 2 or 3 weeks

sJIA – 162 mg once weekly or every 2 weeks

150 or 200 mg every 2 weeks

64 mg every 2 or 4 weeks

Formal indications

RA, pJIA, sJIA, GCACRS against CAR-T-cell therapy, COVID-19, SSc-ILD

RA

RА, COVID-19 (approved only in Russia)

Main randomized placebocontrolled studies for RA

  • Resistance to MTX (combination therapy with MTX)

OPTION,20 LITHE,21

MOBILITY,22 KAKEHASI23

CREDO-124

CREDO 225

  • Resistance to csDMARDs (combination therapy with csDMARDs)

TOWARD,26 ROSE,27 SUMMACTA,28 BREVACTA,29

  • Resistance to TNF-α inhibitors

RADIATE30

ADACTA,31 SATORI,32 AMBITION33

U-ACT-EARLY;34 FUNCTION35

TARGET36

CREDO 3,37 Genovese et al.,§38 Takeuchi et al.§39

  • Resistance to MTX (monotherapy)

MONARCH40

  • DMARD-naïve (monotherapy)

*Sirukumab is a human monoclonal antibody designed for the treatment of RA. The clinical development programme was terminated by the manufacturer. This product was not approved by the US Food and Drug Administration due to an imbalance in mortality between sirukumab and placebo groups in phase III.

All trials listed were phase III studies except ADACTA (phase IV) and two phase II studies §(38,39).

CAR-T = chimeric antigen receptor T cell;COVID-19 = coronavirus disease 2019;CRS = cytokine release syndrome;csDMARD = conventional synthetic disease-modifying antirheumatic drugs;GCA = giant cell arteritis;Ig = immunoglobulin;IL = interleukin;IV = intravenous;mAB = monoclonal antibody;p/sJIA polyarticular/systemic juvenile idiopathic arthritis;R = receptor;RA = rheumatoid arthritis;SC subcutaneous;SSc-ILD = systemic sclerosis-associated interstitial lung disease;TNF = tumour necrosis factor.

Currently, several bDMARDs specific to IL-6R and IL-6 have been developed. The most well-characterized ones include tocilizumab (Actemra, RoActemra; F. Hoffmann-La Roche Ltd., Basel, Switzerland), which is a humanized mAb targeting IL-6R,45,46 and sarilumab (Kevzara®; Sanofi and Regeneron Pharmaceuticals, Inc.Paris, France), which is a human mAb targeting IL-6R.47,48 The mAbs that block the activity of IL-6 itself include the human mAbs sirukumab,49,50 the humanized mAbs clazakizumab and satralizumab (Enspryng®; F. Hoffmann-La Roche Ltd., Basel, Switzerland),51 and the chimeric mAb siltuximab (Sylvant®; EUSA Pharma, Hemel Hempstead, UK).52

This article focuses on the humanized mAb olokizumab, which binds to IL-6, developed by R-PHARM (Moscow, Russia) under the license agreement with UCB Pharma (Brussels, Belgium).53 The half-life of the product is 31 daysits bioavailability is 65%, and subcutaneous injection volume is 0.4 mL (for dose of 64 mg).

To understand the mechanism of action of olokizumab, it has to be highlighted that IL-6 contains three conservative conformational epitopes: site I, site II and site III (Figure 1). Site I participates in the formation of the IL-6 complex with IL-6R, and site II is a composite epitope interacting with cytokine-binding homologous gp130 site, with the formation of IL-6RIL-6gp130 trimeric complex. Subsequent interaction between IL-6 site III with the gp130 immunoglobulin-like activation domain consisting of two IL-6RIL-6–gp130 trimers leads to the formation of a complete biologically active hexamer signalling complex activating JAK-STAT. Thus, by specifically blocking site III, the mode of action of olokizumab is special, as it limits the ability of IL-6 to form a hexameric signalling complex, thereby suppressing the activation of the JAK-STAT signalling pathway.14,53

Figure 1: Characteristics of interleukin 6 inhibitors

Ab = antibody; IL = interleukin; R = receptor.

Efficacy and safety of olokizumab for rheumatoid arthritis

CREDO 1

The efficacy and safety of olokizumab were investigated in CREDO 1 (ClinicalTrials.gov identifier: NCT02760368), 24week multicentre randomized controlled trial (RCT) that enrolled 428 patients randomized 1:1:1 to groups receiving olokizumab 64 mg every 2 weeksolokizumab 64 mg every 4 weeks or placebo.24 The primary endpoint was achieving the American College of Rheumatology 20% improvement criteria (ACR20) after 12 weeks. Secondary endpoints included the number of patients with Disease Activity Score-C-reactive protein (DAS28-CRP) of <3.2 at week 12, Clinical Disease Activity Index (CDAI) of 2.8 at week 24, ACR50 response after 24 weeks and changes in Health Assessment Questionnaire-Disability Index (HAQ-DIfrom baseline to week 12.

ACR20 response was achieved in 70.4% of patients treated with olokizumab every 4 weeks, 63.6% of patients receiving olokizumab every 2 weeks and 25.9% of the placebo group (p<0.001) (Table 3).24 Olokizumab had higher efficacy than placebo after 12 weeks, which was maintained for up to 24 weeks. The frequency of DAS28 CRP decrease 3.2 was 33.6% with olokizumab every 2 weeks38.7% with olokizumab every 4 weeks and 3.5% with placebo (p<0.0001 in both comparisons). Significant improvement in physical function (HAQ-DI) was noted after 12 weeks of treatment with olokizumab compared with placebo (olokizumab every 2 weeks-0.54; olokizumab every 4 weeks0.56placebo: 0.20p<0.0001 in both cases). Minimally significant improvement in HAQ-DI (0.22) occurred in 62.2% and 66.2% of patients treated with olokizumab every 2 weeks and every 4 weeks, respectively, compared with 47.6% of patients in the placebo group. The ACR50 response after 24 weeks was reported in 42.7 % of patients receiving olokizumab every 2 weeksin 48.6% of those receiving olokizumab every 4 weeks and in 7.7% of those receiving placebo (p<0.0001 in both cases). Remission (CDAI 2.8) after 24 weeks was achieved in 8.4% of patients treated with olokizumab every 2 weeksin 7.7% of patients treated with olokizumab every 4 weeks and in no patients in the placebo group (p<0.0003 and p<0.0002, respectively). Olokizumab efficacy (ACR20) was not affected by sex, age, body mass index, initial severity of RA, duration of previous methotrexate therapy, detection of antibodies to cyclic citrullinated proteins and rheumatoid factor. In addition, there was a more pronounced positive change in the Short Form-36 mental and physical domains, the Functional Assessment of Chronic Illness Therapy – Fatigue and other qualityoflife parameters.

Table 3: Efficacy of olokizumab compared with placebo in patients with methotrexate-resistant rheumatoid arthritis (CREDO-1) (12 weeks)

Efficacy parameters

Groups of patients

OKZ (every 2 weeks)

N=143

OKZ (every 4 weeks)

N=142

Placebo

N=143

Primary endpoint

ACR20, n (%)

91 (63.6)

<0.0001

100 (70.4)

<0.0001

37 (25.9)

Secondary endpoints

ACR50, n (%)

61 (42.7)

<0.0001

69 (48.6)

<0.0001

11 (7.7)

DAS28-CRP 3.2, n (%)

48 (33.6)

<0.0001

55 (38.7)

<0.0001

5 (3.5)

CDAI 2.8, n (%)

12 (8.4)

<0.001

11 (7.7)

<0.001

0

HAQ-DI, LSM (SE)

0.54 (0.04)

0.56 (0.04)

0.20 (0.04)

ACR(20/50) = American College of Rheumatology improvement criteria (20%/50% improvement);CDAI = Clinical Disease Activity Index;DAS28-CRP = Disease Activity Score-C-reactive protein;HAQ-DI = Health Assessment Questionnaire-Disability Index;LSM = least squares mean;OKZ = olokizumab;SE = standard error.

Most adverse drug reactions (ADRs) were nosevere and occurred in about half of the patients. ADRs leading to discontinuation of treatment were reported in 4.9% of patients who received olokizumab every 2 weeks3.5% of patients who received olokizumab every 4 weeks and in 0.7% of patients who received placebo.24 Injection-related reactions were reported in two patients (1.4%) in each olokizumab group. In total, 20 serious ADRs were reported, 5.6% among patients from both olokizumab groups and 2.8% from patients in the placebo group. The most common serious ADRs were infections, which occurred in 2.8% of patients receiving olokizumab every 2 weeksin 0% of those receiving olokizumab every 4 weeks and of 1.4% in those receiving placebo. The only fatal outcome reported was in a patient receiving olokizumab every 2 weeks and was associated with staphylococcal sepsis resulting in toxic shock. As with treatment with other IL-6 inhibitors, olokizumab was associated with increased lipid levels, although no cardiovascular complications were observed. In very rare cases, moderate thrombocytopenia and neutropenia were reported. Increased serum alanine aminotransferase levels (>3 times the upper limit of normal) were observed in 9.2% of patients treated with olokizumab every 2 weeksin 11.4% of patients treated with olokizumab every 4 weeks and in 5.0% of patients treated with placebo. Antidrug antibodies were found in 4.4% of patients receiving olokizumab every 2 weeks and in 6.6% of patients receiving olokizumab every 4 weeks. Neutralizing antidrug antibodies were not detected.

CREDO 2

Among the RCTs designed to investigate the efficacy of mAb to IL-6R or IL-6, the CREDO 2 study (ClinicalTrials.gov identifier: NCT02760407) is of particular interest because it was not only placebo controlled but also active comparator controlled (adalimumab) in patients with methotrexate resistance.25 This RCT enrolled 1,648 patients with active RA (swollen joint count of 6 out of 66 joints assessedtender joint count of 6 out of 68 joints assessed) who met the 2010 American College of Rheumatology/European Alliance of Associations for Rheumatology (ACR/EULAR) criteria, with inadequate effect (or intolerance) of methotrexate (12 weeks) at a dose of 1525 mg/week. The patients were randomized (2:2:2:1) to four groups: olokizumab 64 mg every 2 weeks, olokizumab 64 mg every 4 weeksadalimumab 40 mg every 2 weeks or placebo, in all cases added to methotrexate therapy. The primary endpoint was ACR20 response after 12 weeksThe secondary endpoints were non-inferiority of olokizumab compared with adalimumab with respect to an ACR20 response, reduction of percentage of patients receiving olokizumab with a DAS28-CRP of 3.2 compared with both adalimumab and placebo, HAQ-DI changes, ACR50 and CDAI 2.8 (remission).

After 12 weeksthe ACR20 response was reported in 70.3% of patients treated with olokizumab every 2 weeks71.4% of patients treated with olokizumab every 4 weeks66.9% of patients in the adalimumab group and 44.4% of patients in the placebo group (p<0.0001) (Table 4).25 Differences in the efficacy of olokizumab and adalimumab compared with placebo were noticeable after 2 weeks. DAS28-CRP 3.2 was achieved in 45.3% of patients treated with olokizumab every 2 weeks45.7% of patients treated with olokizumab every 4 weeks38.3% of patients treated with adalimumab and 12.8% of patients in the placebo group (all p<0.0001). With olokizumab and adalimumabthe ACR50 response and rate of remission (CDAI 2.8) were more frequent compared with placebo.

Table 4: Efficacy of olokizumab compared with adalimumab and placebo in patients with methotrexate-resistant rheumatoid arthritis (CREDO-2)

Efficacy parameters

Groups of patients

OKZ (every 2 weeks)

N=464

OKZ (every 4 weeks)

N=479

ADA

N=462

Placebo

N=243

Primary endpoint

ACR20, 12 weeks, n (%)

326 (70.3)

<0.0001

342 (71.4)

<0.0001

309 (66.9)

<0.0001

108 (44.4)

Secondary endpoints

ACR50, 24 weeks, n (%)

234 (50.4)

<0.0001

240 (50.1)

<0.0001

214 (46.3)

55 (22.6)

DAS28-CRP 3.212 weeks, n (%)

210 (45.3)

<0.0001

219 (45.7)

<0.0001

177 (38.3)

<0.0001

31 (12.8)

CDAI 2.8, 24 weeks, n (%)

52 (11.2)

0.0008

58 (12.1)

0.0003

60 (13.0)

10 (4.1)

HAQ-DI, 12 weeks, LSM (SE)

0.64 (0.03)

0.61 (0.03)

0.61 (0.03)

0.42 (0.04)

ACR(20/50) = American College of Rheumatology improvement criteria (20%/50% improvement);ADA adalimumab;CDAI = Clinical Disease Activity Index;DAS28-CRP = Disease Activity Score-C-reactive protein;HAQ-DI = Health Assessment Questionnaire-Disability Index;LSM = least squares mean;OKZ = olokizumab;SE = standard error.

In general, ADRs were reported in 68.0% of patients. Infections (upper respiratory tract infection and urinary tract infection) were the most frequent events.25 In most cases, ADRs were mild to moderate and led to discontinuation of treatment in 4.5% of patients treated with olokizumab every 2 weeks6.3% of patients treated with olokizumab every 4 weeks5.6% of patients treated with adalimumab and 3.7% of patients treated with placebo. The incidence of serious ADRs was 4.8%, 4.2%, 5.6% and 4.9%, respectively. The most common serious ADRs were infections: 1.3% occurred in patients who received olokizumab every 2 weeks1.5% in patients who received olokizumab every 4 weeks3.5% in patients who received adalimumab and 1.6% in patients who received placebo. ADRs leading to death occurred in three patients (0.6%) treated with olokizumab every 2 weekstwo patients (0.4%) treated with olokizumab every 4 weeksone (0.2%) treated with adalimumab and one treated with placebo (0.4%). Serious adverse events leading to death were as follows: one case each of stroke, sepsis and septic shock among patients receiving olokizumab every 2 weeks (0.2%); one case each of sepsis and myocardial infarction among patients receiving olokizumab every 4 weeks (0.2%); sepsis in one patient receiving adalimumab (0.2%); and sudden death in one patient receiving placebo (0.4%). Antidrug antibodies were found in 3.8% of patients treated with olokizumab every 2 weeks and in 5.1% of patients treated with olokizumab every 4 weeks. Neutralizing antidrug antibodies were detected in two patients treated with olokizumab every 4 weeks, one of whom lacked treatment ACR20 response.

CREDO 3

The RCT CREDO-3 (ClinicalTrials.gov identifier: NCT02760433was designed to evaluate the efficacy and safety of olokizumab in patients resistant to TNF-α inhibitors.37 The study enrolled 368 patients, who were randomized (2:2:1) to three groups: olokizumab 64 mg every 2 weeksolokizumab 64 mg every 4 weeks and placebo. After 16 weeks, the patients receiving placebo were re-randomized into groups receiving olokizumab 64 mg every 2 weeks and olokizumab 64 mg every 4 weeksPatients had active RA (swollen joint count of 6 out of 66 joints considerd; tender joint count of 6 out of 68 joints considered), met the ACR/EULAR criteria (2010), had received methotrexate 1525 mg/week for 12 weeks prior to screening and had an inadequate response to at least one anti-TNF agent after 12 weeks of treatment. The primary endpoint was ACR20 response after 12 weeks. Secondary endpoints included the number of patients achieving a decrease in DAS28-CRP 2.8 after 12 weeks.

The primary efficacy endpoint (ACR20) after 12 weeks was reported in 60.9% of patients receiving olokizumab every 2 weeks59.6% of patients receiving olokizumab every 4 weeks and in 40.6% of patients receiving placebo (p<0.01 for both comparisons) (Table 5).37 The difference in therapeutic efficacy between the patients receiving olokizumab or placebo was already observed after 2 weeks and persisted for 24 weeksDifferences were also reported between patients receiving olokizumab every 2 weeksolokizumab every 4 weeks and placebo according to DAS28-CRP 3.2 (secondary endpoint) (p<0.0001 and p<0.0035, respectively). Despite the tendency for more pronounced positive changes in HAQ-DI between the patients receiving olokizumab and placebo, these differences were not statistically significant (Table 5). As in CREDO 1, the efficacy of olokizumab (ACR20) was not affected by sex, age, body mass index, initial severity of RA, duration of previous methotrexate therapy, detection of antibodies to cyclic citrullinated proteins and rheumatoid factor. During the re-randomization of patients treated with placebo to the olokizumab groups after 16 weeks, rapid positive changes were reported in all tested endpoints, reflecting therapeutic efficacy. In addition, positive changes in quality of life (mental and physical domains of the Short Form-36 index) were observed in the olokizumab groups.

Table 5: Efficacy of olokizumab compared with placebo in patients with tumour necrosis factor alpha inhibitor-resistant rheumatoid arthritis (12 weeks) (CREDO-3)

Efficacy parameters

Groups of patients

OKZ (every 2 weeks)

N=138

OKZ (every 4 weeks)

N=161

Placebo

N=69

Primary endpoint

ACR20, n (%)

84 (60.9)

<0.01

96 (59.6)

<0.01

28 (40.6)

Secondary endpoints

ACR50, n (%)

46 (33.3)

<0.01

52 (32.3)

<0.01

11 (15.9)

DAS28-CRP 3.2, n (%)

55 (39.9)

<0.001

45 (28.0)

<0.01

8 (11.6)

CDAI 2.8, n (%)

9 (6.5)

<0.001

5 (3.1)

<0.001

0

HAQ-DI, LSM (SE)

0.49 (0.05)

0.025

0.39 (0.04)

0.32 (0.07)

ACR(20/50) = American College of Rheumatology improvement criteria (20%/50% improvement);CDAI = Clinical Disease Activity Index;DAS28-CRP = Disease Activity Score-C-reactive protein;HAQ-DI = Health Assessment Questionnaire-Disability Index;LSM = least squares mean;OKZ = olokizumab;SE = standard error.

The overall incidence up to 24 weeks of treatmen- emergent adverse events (TEAEswas 64.7% in particular 64.3% of patients in the olokizumab every 2 weeks group59.7% of patients in the olokizumab every 4 weeks group and 50.7% of patients in the placebo group.37 Most TEAEs were mild, and infectious complications were the most frequent. Serious TEAEs were reported in 7.0% of patients treated with olokizumab every 2 weeks3.2% patients treated with olokizumab every 4 weeks and no patients in the placebo group. Increased (>3 the upper limit of normal) alanine transaminase levels were observed in 8.7% of patients receiving olokizumab every 2 weeks10.0% of patients receiving olokizumab every 4 weeks and 0% of patients receiving placebo. Non-neutralizing antidrug antibodies were found in 6.9% of patients; there was no association between antidrug antibody detection, efficacy of therapy and development of ADRs.

Discussion

The results of these three large-scale, international phase III randomized, placebo-controlled double-blind studies of olokizumab in RA  CREDO 1,24 CREDO 225 and CREDO 337 – have confirmed the efficacy and safety of IL-6 inhibition and have led to approval by the US Food and Drug Administration.54 It is currently unclear whether the biological and clinical effects of mAbs inhibiting IL-6R or IL-6 itself are different. For example, the administration of mAb to IL-6R while retaining IL-6 in the bloodstream leads to the increase of IL-6 serum concentrations. For mAbs to IL-6 (e.g. olokizumab) induction of IL6 expression has not been observed so far.55 According to the study results, no clear difference was evident between olokizumab and the other IL-6R antagonists for efficacy (Table 6) and safety outcomes (Table 7).20,22,24,25,30,36,37,56–58

Table 6: Comparative efficacy of interleukin 6 inhibitor therapy in rheumatoid arthritis

 

Product (trial name)

Duration, weeks

Groups of patients

Efficacy, %

ACR20

ACR50

ACR70

DAS28-CRP <2.6

CDAI 2.8

Resistance to methotrexate

Tocilizumab (OPTION, phase III)20

24

TCZ 8 mg/kg 4 weeks MTX (n=205)

TCZ 4 mg/kg 4 weeks MTX (n=213)

Placebo MTX (n=204)

58.5*

47.8

26.5

43.9*

31.4

10.8

21.9*

12.2

1.9

27.4*

13.4

0.8

Sarilumab (MOBILITY, phase III)22

52

SAR 200 mg 2 weeks MTX (n=399)

SAR 150 mg 2 weeks MTX (n=400)

Placebo MTX(n=398)

66.4*

58.0

33.4

46.0

37.0

17.0

12.8*

14.8

3.0

34.1*

27.8

10.1

13.8*

10.3

5.0

Levilimab (AURORA, phase II)56

12

LVM 162 mg + МТX1 week (n=35)

LVM 162 mg + МТX2 weeks (n=35)

Placebo MTX (n=35)

77.1*

57.1

17.1

51.4*

31.4

5.7

28.6*

20.0

2.9

11.4*

5.7

2.9

Only change of overall CDAI

Olokizumab CREDO-1 (phase III)24

24

OKZ 64 mg 2 weeks MTX (п=143)

OKZ 64 mg 4 weeks MTX (п=142)

Placebo MTX (n=143)

63.6

70.4

25.9

42.7

48.6

7.7

19.6

22.5

2.1

21.7

28.2

3.5

8.4

7.7

0.0

Olokizumab CREDO-2 (phase III)25

24

OKZ 64 mg 2 weeks MTX (п=464)

OKZ 64 mg 4 weeks MTX (п=479)

Placebo MTX (n=243)

74.1*

71.4

46.5

50.4*

50.1

22.6

28.7*

26.9

11.1

52.2*

53.9

21.8

11.2*

12.1

4.1

Sirukumab (SIRROUND-D, phase III)57

16

SRM 100 mg 2 weeks MTX (n=551)

SRM 50 mg 4 weeks MTX (n=553)

Placebo MTX (n=550)

53.5*

54.8

26.4

33.2*

30.2

12.4

16.3*

14.9

3.4

25.5

26.0

5.6

8.4

7.0

3.1

Resistance to TNF-α inhibitors

Tocilizumab (RADIATE, phase III)30

24

TCZ 8 mg/kg 4 weeks MTX (n=170)

TCZ 4 mg/kg 4 weeks MTX (n=161)

Placebo MTX (n=158)

50.0*

30.4

10.1

28.8*

16.8

3.8

12.4*

5.0

1.3

30.1*

7.6

1.6

Sarilumab (TARGET, phase III)36

24

SAR 200 mg 2 weeks MTX (n=184)

SAR 150 mg 2 weeks MTX (n=181)

Placebo MTX (n=181)

60.9*

55.8

33.7

40.8*

37.0

18.2

16.3*

19.9

7.2

28.8*

24.9

7.2

Olokizumab (CREDO-3, phase III)37

12

OKZ 64 mg 2 weeks MTX (п=138)

OKZ 64 mg 4 weeks MTX (п=161)

Placebo MTX (n=69)

60.9

59.6

40.6

33.3

32.3

15.9

19.6

13.0

5.8

21.7

15.5

4.3

6.5

3.1

0.0

Sirukumab (SIRROUND-T, phase III)58

16

SRM 100 mg 2 weeks MTX (n=292)

SRM 50 mg 4 weeks MTX (n=292)

Placebo MTX (n=294)

42.8*

42.8

26.0

21.6*

20.9

8.8

9.9*

8.6

4.1

21.6

19.2

8.2

5.8*

3.8

3.1

*24 weeksDAS28-ESR was used in this study; DAS28-CRP <3.2 was used in this study; – not provided

ACR(20/50/70) = American College of Rheumatology improvement criteria (20%/50%/70% improvement);CDAI = Clinical Disease Activity Index;DAS28-CRP = Disease Activity Score-C-reactive protein;LVM = levilimab;MTX = methotrexate;OKZ = olokizumab;SAR = sarilumab;SRM = sirukumab;TCZ = tocilizumab;weeks = duration in weeks.

Table 7: Comparative safety of interleukin 6 inhibitor therapy in rheumatoid arthritis

Product (trial name)

Duration, weeks

Safety population

Safety, n (%)

1 AE

Withdrawal due to AE

SAE

Death

Resistance to methotrexate

Tocilizumab (OPTIONphase III)20

24

TCZ 8 mg/kg 4 weeks + МТX (n=206)

TCZ 4 mg/kg 4 weeks + МТX (n=212)

Placebo + МТX (n=204)

143 (69)

151(71)

129 (63)

12 (5.9)

14 (6.5)

6 (2.9)

13 (6)

13 (6)

12 (6)

0

0

0

Sarilumab (MOBILITY, phase III)22

52

SAR 200 mg 2 weeks + МТX (n=424)

SAR 150 mg 2 weeks + МТX (n=431)

Placebo + МТX (n=427)

331 (78)

321 (74)

263 (61)

59 (14)

54 (13)

20 (5)

48 (11)

38 (9)

23 (5)

1 (0.2)

2 (0.5)

2 (0.5)

Levilimab (AURORA, phase II)56

12

LVM 162 mg + МТX1 week (n=35)

LVM 162 mg + МТX2 weeks (n=35)

Placebo + МТX (n=35)

34 (97.1)

29 (82.9)

25 (71.4)

0

4 (11.4)

2 (5.7)

4 (11.4)

2 (5.7)

1 (2.9)

0

2 (5.7)

0

Olokizumab CREDO-1 (phase III)24

24

OKZ 64 mg 2 weeks + МТX (п=143)

OKZ 64 mg 4 weeks + МТX (п=142)

Placebo + МТ(n=143)

83 (58.0)

81 (57.0)

62 (43.7)

7 (4.9)

5 (3.5)

1 (0.7)

8 (5.6)

8 (5.6)

4 (2.8)

1 (0.7)

0 (0)

0 (0)

Olokizumab CREDO-2 (phase III)25

24

OKZ 64 mg 2 weeks + МТX (п=463)

OKZ 64 mg 4 weeks + МТX (п=477)

Placebo + МТ(n=243)

324 (70.0)

338 (70.9)

154 (63.4)

23 (5.0)

28 (5.8)

9 (3.7)

22 (4.8)

20 (4.2)

12 (4.9)

3 (0.6)

2 (0.4)

1 (0.4)

Sirukumab (SIRROUND-D, phase III)57

16

SRM 100 mg 2 weeks + МТX (n=662)

SRM 50 mg 4 weeks + МТX (n=663)

Placebo + МТX (n=556)

531 (80.2)

528 (79.6)

364 (65.5)

51 (7.7)

53 (8.0)

18 (3.2)

65 (9.8)

73 (11.0)

38 (6.8)

3 (0.5)

7 (1.1)

1 (0.2)

Resistance to TNF-α inhibitors

Tocilizumab (RADIATE, phase III)30

24

TCZ 8 mg/kg 4 weeks + МТX (n=175)

TCZ 4 mg/kg 4 weeks + МТX (n=163)

Placebo + МТX (n=160)

147 (84.0)

142 (87.1)

129 (80.6)

11 (6.3)

10 (6.1)

10 (6.3)

24 (13.7)

22 (13.5)

31 (19.4)

0

0

0

Sarilumab (TARGET, phase III)36

24

SAR 200 mg 2 weeks + МТX (n=184)

SAR 150 mg 2 weeks + МТX (n=181)

Placebo + МТX (n=181)

120 (65.2)

119 (65.7)

90 (49.7)

17 (9.2)

18 (9.9)

8 (4.4)

10 (5.4)

6 (3.3)

6 (3.3)

0

0

1 (0.6)

Olokizumab (CREDO-3, phase III)*37

24

OKZ 64 mg 2 weeks + МТX (п=139)

OKZ 64 mg 4 weeks + МТX (п=160)

Placebo + МТX (n=69)

74 (53.2)

88 (55.0)

35 (50.7)

6 (4.3)

9 (5.6)

2 (2.9)

9 (6.5)

3 (1.9)

0 (0)

0 (0)

0 (0)

0 (0)

Sirukumab (SIRROUND-T, phase III)58

24

SRM 100 mg 2 weeks + МТX (n=292)

SRM 50 mg 4 weeks + МТX (n=292)

Placebo + МТX (n=294)

207 (71)

194 (66)

182 (62)

21 (7.2)

19 (6.5)

11 (3.7)

22 (8)

28 (10)

15 (5.1)

0 (0)

0 (0)

0 (0)

*At week 16 all placebo-treated patients were randomized to one of the OKZ regimens.

AE = adverse effects;LVM = levilimab;MTX = methotrexate;OKZ = olokizumab;SAE = serious side effects;SAR = sarilumab;SRM = sirukumab;TCZ = tocilizumab.

Treatment considerations for the interleukin 6 inhibitors as a class

According to consensus recommendations,59,60 the products inhibiting IL-6R play a central role in the treatment of RA (level of evidence 1A); however, only IL-6 inhibitors (tocilizumab and sarilumab) are included in the current international treatment guidelines (EULAR and ACR).61,62 Further studies and real-world evidence are required to improve our knowledge about olokizumab and to clarify whether it has the same characteristics as the entire group of products inhibiting the effects of IL-6.

In patients with RA resistant to methotrexate, all bDMARDs used, including IL-6 inhibitors, TNFα inhibitors, T cell co-stimulation blockers (abatacept) and anti-Bcell drugs (rituximab), provide a similar efficacy.63-65 This is consistent with the data comparing olokizumab and adalimumab efficacy.25 At the same time, IL-6R inhibitors (tocilizumab and sarilumab) are more effective than TNFα inhibitors as monotherapy in patients with contraindications to methotrexate.31,40 According to EULAR guidelines, the use of IL-6R inhibitors as drugs with different mode of action is considered preferable to switching from one TNFα inhibitor to another product in this class in patients resistant to TNF-α inhibitors;61,66 however, this provision has not yet been reflected in international recommendations on RA pharmacotherapy.61,62 It is noteworthy that combination therapy with IL-6 inhibitors (tocilizumab) and methotrexate is slightly more effective than monotherapy with IL-6R inhibitors, albeit at the cost of an increased risk of adverse events.67-70 Preliminary results indicate that the administration of JAK inhibitors sometimes allows the resistance to both TNFα and IL-6R inhibitors to be overcome.71,72 This is probably due to the fact that the mechanism of action of JAK inhibitors is not limited to IL-6 signalling but includes other proinflammatory cytokines involved in RA immunopathogenesis.

Similarly to other antirheumatic drugs, the efficacy of IL-6 inhibitors (i.e. changes in disease activity) should be evaluated every 3 months until low disease activity is achieved (CDAI 10Simple Disease Activity Index 11, DAS28-CRP <3.2) and every 6 months after reaching remission (ACR/EULAR criteria).61 At the same time, the evaluation of IL-6 inhibitor efficacy requires that both improvement in clinical manifestations of RA (swollen and tender joint counts) and CRP reduction are taken into account. This makes it difficult to use activity indices that include CRP (DAS28-CRP and Simple Disease Activity Index)73,74 to assess the efficacy of IL-6 inhibitor therapy. Changes in CDAI (including only swollen/tender joint counts and general assessment of the patient’s condition, without taking into account CRP level) is believed to be more informative for describing the efficacy of IL-6 inhibitors. It should be emphasized that, according to the data from CREDO 2 on CDAI, the response rate with olokizumab was similar to that with adalimumab.25 Data from 19 international registries (the JAKpot collaboration), including 31,846 patients who received TNFα inhibitors (17,522 courses), abatacept (2,775 courses), IL-6 inhibitors (3,863 courses) and JAK inhibitors (7,686 courses), indicate that treatment discontinuation due to lack of efficacy occurred less often with JAK inhibitors (adjusted hazard ratio 0.75) and IL-6 inhibitors (adjusted hazard ratio 0.76) compared with TNFα inhibitors, but discontinuation due to ADR was more common (adjusted hazard ratio 1.16).75 The efficacy by the adjusted CDAI with TNF inhibitors, IL-6 inhibitors and JAK inhibitors in the groups compared did not differ but was slightly lower in the abatacept group.75

The evidence of predictive markers for the efficacy of IL-6 inhibitors in RA is limited, but they may be important for the choice of therapy. A low basal level of IL-6 is associated with the efficacy of tocilizumab or preservation of the effect after dose reduction or drug discontinuation.76,77 In contrasthigh basal level of CRP is a better predictor of IL-6 inhibitor efficacy (tocilizumab and sarilumab) compared with TNFα inhibitors.78,79 Data concerning the relationship between body mass index and efficacy of IL-6 inhibitors are contradictory.80,81 Meta-analysis data reveal a lack of validated clinical and laboratory biomarkers for the prediction of the efficacy of IL-6 inhibitors in RA.82

The potential advantages of IL-6 inhibitors include a steroid-saving effect (glucocorticoid dose reduction or discontinuation), which is possible in two-thirds of patients.83

Safety considerations for the interleukin 6 inhibitors as a class

Contraindications to IL-6 inhibitors are already well known (i.e. hypersensitivity, severe infections and diverticulitis). Prior to prescribing treatment, a routine examination is necessary, which is also recommended when using other bDMARDs. Treatment with IL-6 inhibitors does not affect the efficacy of vaccinations protecting against pneumococcal, influenza, tetanus and, probably, severe acute respiratory coronavirus 2 (SARS-CoV-2) infections.84–87

Treatment with IL-6 inhibitors may be associated with the development of severe ADRs, including infections (sepsis). However, the incidence of infectious complications (i.e. herpes, opportunistic infections and tuberculosis, hepatitis B and C) is in the same range as with other bDMARDs.88–90 As IL-6 inhibitors can mask an infection, careful monitoring of laboratory and clinical symptoms of infections is vital during treatment with these products.

Treatment with IL-6 inhibitors (e.g. tocilizumab) does not affect or is associated with decreased frequency of malignant neoplasms compared with DMARDs, except for non-melanoma skin cancer.91,92

A gastrointestinal perforation is a specific but very rare complication of treatment with IL-6 inhibitors.93,94 Risk factors include a history of diverticulitis, old age and administration of glucocorticoids and nonsteroidal anti-inflammatory drugs.

A moderate increase in liver enzymes occurs in 50% of patients receiving IL-6 inhibitors, more commonly in combination with methotrexate. The absolute risk of severe liver damage is very low (0.04/100 patient-years).95

Inhibition of IL-6 results in dyslipoproteinaemia, specifically an increase in total cholesterol, low-density lipoproteins and triglycerides.96,97 However, this does not lead to an increased risk of cardiovascular complications or of deep vein thrombosis and pulmonary embolism, at least not compared with treatment with the TNFα inhibitor etanercept.98 There is evidence of the important role played by IL-6 in the pathogenesis of cardiovascular pathology,99–101 and cardiovascular safety of IL-6 inhibitors has been confirmed by a number of studies.102–104 Potential positive vascular effects have been reported for tocilizumab in patients with myocardial infarction (the ASSAIL-MI trialClinicaltrials.gov identifier: NCT03004703)105 and for ziltivekimab, new mAb to IL-6 in the general population of patients with atherosclerotic vascular lesions (the RESCUE trialClinicalTrials.gov identifier: NCT03926117).106

In patients with RA, IL-6 inhibitors have the ability to control the anaemia associated with chronic inflammation107 but are also associated with transient neutropenia and thrombocytopenia. Neutropenia does not increase the risk of infectious complications and usually does not require special treatment;108 in some caseshowever, neutropenia might lead to dose adjustment or treatment discontinuation.

IL-6 inhibitors do not increase the risk of diabetes mellitus109 and may even lead to a decrease in glycated haemoglobin to a greater extent compared with TNFα inhibitors.110,111

In patients with RA suffering from renal failure during IL-6 inhibitor therapy, there is no increase in the risk of ADRs or deterioration of renal function.112 In serial studies, IL-6 inhibitors were reported to be effective in terms of inhibiting the development and progression of renal amyloidosis,113 including in patients with RA.114

IL-6 inhibitors are believed to be relatively safe in patients with RA and interstitial lung diseases115 and demyelinating diseases.116 In addition, there are data on tocilizumab efficacy in patients with optic neuromyelitis117 and systemic sclerosis-associated interstitial lung disease,118,119 with the latter resulting in tocilizumab receiving approval by the US Food and Drug Administration for these patients.

Finally, IL-6 inhibitor therapy is associated with the stabilization of the frequency of osteoporotic fracturesn120 and exhibits a positive effect on bone metabolism.121,122

IL-6 inhibitors are very rarely associated with infusion-related reactions (about 7%) and severe hypersensitivity reactions that are not associated with the synthesis of antidrug antibodies.123,124

Interleukin 6 inhibition in coronavirus disease 2019

As IL-6 is of fundamental importance in the development of COVID-19-associated hyperinflammatory syndrome,125,126 IL-6 inhibitors are currently recommended for the treatment of this complication of SARS-CoV-2 infection in selected cases.127 Some data are available on the efficacy of olokizumab in patients with severe COVID-19;128,129 these are similar to data for tocilizumab.129

Prospects for the future development of olokizumab

Despite the long-term (>10 years) use of IL-6 inhibitors in rheumatology,13,16,130 numerous theoretical and practical issues concerning the role of these drugs in the treatment of RA require further investigation. This can be fully attributed to olokizumabwhich has completed a successful phase III programme and for which real clinical practice data are beginning to accumulate. It is necessary now to implement the following tasks:

  1. Investigate the differences in efficacy and safety of IL-6 inhibitors blocking IL-6R or IL-6 itself and whether the data on mAbs to IL-6R can be extrapolated to mAbs to IL-6, primarily olokizumab.

  2. Develop indications for olokizumab as the first-choice bDMARD in RA in patients with inadequate response to methotrexate monotherapy.

  3. Evaluate the efficacy and safety of switching from mAbs to IL-6R therapy to mAbs to IL-6 therapy (olokizumab) for medical reasons (e.g. inadequate response to therapy) and for administrative reasons.

  4. Investigate the efficacy of olokizumab in patients with resistance to JAK inhibitors and vice versa.

  5. Compare the efficacy and safety of olokizumab and JAK inhibitors as monotherapy and combination therapy with methotrexate and other DMARDs.

  6. Investigate the efficacy and safety of olokizumab in patients with resistance to other bDMARDs (e.g. anti-B-cell therapy with rituximab, inhibition of co-stimulation of T-cells with abatacept, the effect of B-cell depletion after rituximab).

  7. Describe the effect of olokizumab on the risk and course of comorbidities (i.e. cardiovascular pathology, diabetes mellitus, interstitial lung disease, osteoporotic fractures of skeletal bones, osteoarthritis) characteristic of RA131-133 and multimorbid pathologies, as well as on pain, depression, fatigue and secondary fibromyalgia syndrome,134–137 in terms of individualized RA therapy.

  8. Investigate laboratory biomarkers that allow to predict efficacy and resistance in olokizumab.

  9. Investigate the effect of olokizumab on the progression of joint destruction based on X-ray and magnetic resonance findings.

  10. Investigate the potential to extend indications for olokizumab, taking into account the positive experience with IL-6 inhibitors (tocilizumab) for the treatment of giant cell arteritis,138-140 Takayasu arteritis,141 juvenile idiopathic arthritis,142 adult Still’s disease,143 early systemic scleroderma,118,119 autoinflammatory syndromes (familial Mediterranean fever, Behcet’s disease, TNF-associated periodic syndrome)144, hyperinflammatory syndromes, macrophage activation syndrome, haemophagocytic lymphohistiocytosis, chimeric antigen RT-cell therapy, COVID-19 and persistent inflammation, immunosuppression and catabolism syndrome.127,145,146

Article Information:
Disclosure

Eugen Feist certifies that he participated in the speakers bureau of R-Pharm, Abbvie, AB2Bio, BMS, Celgene, Galapagos, Janssen, Lilly, Medac, MSD, Novartis, Pfizer, Roche/Chugai, Sanofi, Sobi and UCB; was consultant for R-Pharm, Abbvie, AB2Bio, BMS, Celgene, Galapagos, Janssen, Lilly, Medac, MSD, Novartis, Pfizer, Roche/Chugai, Sanofi, Sobi and UCB; and received grant/research support from Lilly, Novartis, Galapagos, Pfizer and Roche/Chugai.

Evgeny Nasonov certifies that he received grant/research support from Hoffmann-La Roche, Eli Lilly, R-Pharm and Pfizer.

Compliance With Ethics

This article involves a review of the literature and did not involve any studies with human or animal subjects performed by either of the authors.

Review Process

Double-blind peer review

Authorship

The named authors meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship of this manuscript, take responsibility for the integrity of the work as a whole, and have given final approval for the version to be published.

Correspondence

Dr Eugen Feist, Helios Department for Rheumatology and Clinical Immunology, Sophie-v.-Boetticher-Straße 1, Vogelsang-Gommern 39245, Germany. E: eugen.feist@helios-gesundheit.de

Support

No funding was received in the publication of this article.

Access

This article is freely accessible at touchIMMUNOLOGY.com. © Touch Medical Media 2023

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the writing of this study.

Received

2023-01-13

References

1. Smolen JSAletaha DMcInnes IBRheumatoid arthritisLancet2016;388:202338DOI10.1016/S0140-6736(16)30173-8

2. Firestein GSMcInnes IBImmunopathogenesis of rheumatoid arthritisImmunity2017;46:18396DOI10.1016/j.immuni.2017.02.006

3. McInnes IBSchett GPathogenetic insights from the treatment of rheumatoid arthritisLancet2017;389:232837DOI10.1016/S0140-6736(17)31472-1

4. Burmester GRBijlsma JWJCutolo MMcInnes IBManaging rheumatic and musculoskeletal diseases-past, present and futureNat Rev Rheumatol2017;13:4438DOI10.1038/nrrheum.2017.95

5. Smolen JSAletaha DBijlsma JWet alTreating rheumatoid arthritis to target: Recommendations of an international task forceAnn Rheum Dis2010;69:6317DOI10.1136/ard.2009.123919

6. Mian AIbrahim FScott DLA systematic review of guidelines for managing rheumatoid arthritisBMC Rheumatol2019;3:42DOI10.1186/s41927-019-0090-7

7. Burgers LERaza Kvan der Helm-van Mil AHWindow of opportunity in rheumatoid arthritis – definitions and supporting evidence: from old to new perspectivesRMD open2019;5:e000870DOI10.1136/rmdopen-2018-000870

8. Burmester GRPope JENovel treatment strategies in rheumatoid arthritisLancet2017;389:233848DOI10.1016/S0140-6736(17)31491-5

9. Tanaka YRecent progress in treatments of rheumatoid arthritis: an overview of developments in biologics and small molecules, and remaining unmet needsRheumatology (Oxford, England)2021;60:vi1220DOI10.1093/rheumatology/keab609

10. Winthrop KLWeinblatt MEBathon Jet alUnmet need in rheumatology: Reports from the targeted therapies meeting 2019Ann Rheum Dis2020;79:8893DOI10.1136/annrheumdis-2019-216151

11. Schett GMcInnes IBNeurath MFReframing immune-mediated inflammatory diseases through signature cytokine hubsN Engl J Med2021;385:62839DOI10.1056/NEJMra1909094

12. Hunter CAJones SAIl-6 as a keystone cytokine in health and diseaseNat Immunol2015;16:44857DOI10.1038/ni.3153

13. Choy EHDe Benedetti FTakeuchi Tet alTranslating IL-6 biology into effective treatmentsNat Rev Rheumatol2020;16:33545DOI10.1038/s41584-020-0419-z

14. Kang STanaka TNarazaki MKishimoto TTargeting interleukin-6 signaling in clinicImmunity2019;50:100723DOI10.1016/j.immuni.2019.03.026

15. Kishimoto TKang SIL-6 revisited: From rheumatoid arthritis to CAR T cell therapy and COVID-19Annu Rev Immunol2022;40:32348DOI10.1146/annurev-immunol-101220-023458

16. Nasonov ELLila AMInhibition of interleukin 6 in immuneinflammatory rheumatic diseases: Achievements, prospects, and hopesRheumatology Science and Practice2017;55:5909DOI10.14412/1995-4484-2017-590-599

17. Favalli EGUnderstanding the role of interleukin-6 (IL-6) in the joint and beyond: A comprehensive review of IL-6 inhibition for the management of rheumatoid arthritisRheumatol Ther2020;7:473516DOI10.1007/s40744-020-00219-2

18. Narazaki MKishimoto TCurrent status and prospects of IL-6-targeting therapyExpert Rev Clin Pharmacol2022;15:57592DOI10.1080/17512433.2022.2097905

19. Jarlborg MGabay CSystemic effects of IL-6 blockade in rheumatoid arthritis beyond the jointsCytokine2022;149DOI10.1016/j.cyto.2021.155742

20. Smolen JSBeaulieu ARubbert-Roth Aet alEffect of interleukin-6 receptor inhibition with tocilizumab in patients with rheumatoid arthritis (option study): A double-blind, placebo-controlled, randomised trialLancet2008;371:98797DOI10.1016/S0140-6736(08)60453-5

21. Kremer JMBlanco RBrzosko Met alTocilizumab inhibits structural joint damage in rheumatoid arthritis patients with inadequate responses to methotrexate: Results from the double-blind treatment phase of a randomized placebo-controlled trial of tocilizumab safety and prevention of structural joint damage at one yearArthritis Rheum2011;63:609621DOI10.1002/art.30158

22. Genovese MCFleischmann RKivitz AJet alSarilumab plus methotrexate in patients with active rheumatoid arthritis and inadequate response to methotrexate: Results of a phase III studyArthritis Rheumatol2015;67:142437DOI10.1002/art.39093

23. Tanaka YWada KTakahashi Yet alSarilumab plus methotrexate in patients with active rheumatoid arthritis and inadequate response to methotrexate: Results of a randomized, placebo-controlled phase III trial in JapanArthritis Res Ther2019;21:79DOI10.1186/s13075-019-1856-4

24. Nasonov EFatenejad SFeist Eet alOlokizumab, a monoclonal antibody against interleukin 6, in combination with methotrexate in patients with rheumatoid arthritis inadequately controlled by methotrexate: Efficacy and safety results of a randomised controlled phase III studyAnn Rheum Dis2022;81:46979DOI10.1136/annrheumdis-2021-219876

25. Smolen JSFeist EFatenejad Set alon behalf of The CREDO2 Group. Olokizumab versus placebo and adalimumab in rheumatoid arthritisNew Engl J Med2022;387:71526DOI10.1056/NEJMoa2201302

26. Genovese MCMcKay JDNasonov ELet alInterleukin-6 receptor inhibition with tocilizumab reduces disease activity in rheumatoid arthritis with inadequate response to disease-modifying antirheumatic drugs: The tocilizumab in combination with traditional disease-modifying antirheumatic drug therapy studyArthritis Rheum2008;58:296880DOI10.1002/art.23940

27. Yazici YCurtis JRInce Aet alEfficacy of tocilizumab in patients with moderate to severe active rheumatoid arthritis and a previous inadequate response to disease-modifying antirheumatic drugs: The rose studyAnn Rheum Dis2012;71:198205DOI10.1136/ard.2010.148700

28. Burmester GRRubbert-Roth ACantagrel Aet alA randomised, double-blind, parallel-group study of the safety and efficacy of subcutaneous tocilizumab versus intravenous tocilizumab in combination with traditional disease-modifying antirheumatic drugs in patients with moderate to severe rheumatoid arthritis (SUMMACTA study)Ann Rheum Dis2014;73:6974DOI10.1136/annrheumdis-2013-203523

29. Kivitz AOlech EBorofsky Met alSubcutaneous tocilizumab versus placebo in combination with disease-modifying antirheumatic drugs in patients with rheumatoid arthritisArthritis Care Res (Hoboken)2014;66:165361DOI10.1002/acr.22384

30. Emery PKeystone ETony HPet alIL-6 receptor inhibition with tocilizumab improves treatment outcomes in patients with rheumatoid arthritis refractory to anti-tumour necrosis factor biologicals: Results from a 24-week multicentre randomised placebo-controlled trialAnn Rheum Dis2008;67:151623DOI10.1136/ard.2008.092932

31. Gabay CEmery Pvan Vollenhoven Ret al, . Tocilizumab monotherapy versus adalimumab monotherapy for treatment of rheumatoid arthritis (ADACTA): A randomised, double-blind, controlled phase 4 trialLancet2013;381:154150DOI10.1016/S0140-6736(13)60250-0

32. Nishimoto NMiyasaka NYamamoto Ket alStudy of active controlled tocilizumab monotherapy for rheumatoid arthritis patients with an inadequate response to methotrexate (SATORI): Significant reduction in disease activity and serum vascular endothelial growth factor by IL-6 receptor inhibition therapyMod Rheumatol2009;19:129DOI10.1007/s10165-008-0125-1

33. Jones GSebba AGu Jet alComparison of tocilizumab monotherapy versus methotrexate monotherapy in patients with moderate to severe rheumatoid arthritis: The AMBITION studyAnn Rheum Dis2010;69:8896DOI10.1136/ard.2008.105197

34. Bijlsma JWJWelsing PMJWoodworth TGet alEarly rheumatoid arthritis treated with tocilizumab, methotrexate, or their combination (U-Act-Early): A multicentre, randomised, double-blind, double-dummy, strategy trialLancet2016;388:34355DOI10.1016/S0140-6736(16)30363-4

35. Burmester GRRigby WFvanRFet alTocilizumab combination therapy or monotherapy or methotrexate monotherapy in methotrexate-naive patients with early rheumatoid arthritis: 2-year clinical and radiographic results from the randomised, placebo-controlled FUNCTION trialAnn Rheum Dis2017;76:127984DOI10.1136/annrheumdis-2016-210561

36. Fleischmann Rvan Adelsberg JLin Yet alSarilumab and nonbiologic disease-modifying antirheumatic drugs in patients with active rheumatoid arthritis and inadequate response or intolerance to tumor necrosis factor inhibitorsArthritis Rheumatol2017;69:27790DOI10.1002/art.39944

37. Feist EFatenejad SGrishin Set alOlokizumab, a monoclonal antibody against interleukin-6, in combination with methotrexate in patients with rheumatoid arthritis inadequately controlled by tumour necrosis factor inhibitor therapy: Efficacy and safety results of a randomised controlled phase III studyAnn Rheum Dis2022;81:16618DOI10.1136/ard-2022-222630

38. Genovese MCFleischmann RFurst Det alEfficacy and safety of olokizumab in patients with rheumatoid arthritis with an inadequate response to TNF inhibitor therapy: Outcomes of a randomised Phase IIb studyAnn Rheum Dis2014;73:160715DOI10.1136/annrheumdis-2013-204760

39. Takeuchi TTanaka YYamanaka Het alEfficacy and safety of olokizumab in Asian patients with moderate-to-severe rheumatoid arthritis, previously exposed to anti-TNF therapy: Results from a randomized phase II trialMod Rheumatol2016;26:1523DOI10.3109/14397595.2015.1074648

40. Burmester GRLin YPatel Ret alEfficacy and safety of sarilumab monotherapy versus adalimumab monotherapy for the treatment of patients with active rheumatoid arthritis (monarch): A randomised, double-blind, parallel-group phase III trialAnn Rheum Dis2017;76:8407DOI10.1136/annrheumdis-2016-210310

41. Murakami MKamimura DHirano TPleiotropy and specificity: insights from the interleukin 6 family of cytokinesImmunity2019;50:81231DOI10.1016/j.immuni.2019.03.027

42. Rose-John SIL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6International journal of biological sciences2012;8:123747DOI10.7150/ijbs.4989

43. Heink SYogev NGarbers Cet alTrans-presentation of IL-6 by dendritic cells is required for the priming of pathogenic Th17 cellsNature immunology2017;18:7485DOI10.1038/ni.3632

44. Bousoik EMontazeri Aliabadi H“Do we know jack” about JAK? A closer look at JAK/STAT signaling pathwayFrontiers in oncology2018;8:287DOI10.3389/fonc.2018.00287

45. Nasonov ЕLUse of tocilizumab for rheumatoid arthritis: New evidenceRheumatology Science and Practice2011;49:4656.

46. Scott LJTocilizumab: A review in rheumatoid arthritisDrugs2017;77:186579DOI10.1007/s40265-017-0829-7

47. Nasonov ЕLLila АМThe efficacy and safety of sarilumab, fullyhuman monoclonal antibodies against interleukin 6 receptor, in rheumatoidarthritis: New evidenceRheumatology Science and Practice2019;57:56477DOI10.14412/1995-4484-2019-564-57

48. Raimondo MGBiggioggero MCrotti Cet alProfile of sarilumab and its potential in the treatment of rheumatoid arthritisDrug Des Devel Ther2017;11:1593603DOI10.2147/DDDT.S100302

49. Pelechas EVoulgari PVDrosos AASirukumab: A promising therapy for rheumatoid arthritisExpert Opin Biol Ther2017;17:75563DOI10.1080/14712598.2017.1315099

50. Tanaka YMartin Mola EIL-6 targeting compared to TNF targeting in rheumatoid arthritis: studies of olokizumab, sarilumab and sirukumabAnn Rheum Dis2014;73:15957DOI10.1136/annrheumdis-2013-205002

51. Serio ITovoli FRheumatoid arthritis: New monoclonal antibodiesDrugs Today (Barc)2018;54:21930DOI10.1358/dot.2018.54.3.2788019

52. SylvantFull prescribing information for SYLVANTAvailable atwww.sylvant.com/en-us/assets/docs/sylvant-prescribing-info.pdf (accessed date21 February 2023).

53. Shaw SBourne TMeier Cet alDiscovery and characterization of olokizumab: A humanized antibody targeting interleukin-6 and neutralizing gp130-signalingMAbs2014;6:77482DOI10.4161/mabs.28612

54. US Food and Drug AdministrationNew Drug Application (NDA): 009768, Original Approvals or Tentative Approvals. Silver Spring, MD: US Food and Drug Administration2020Available atwww.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=009768 (accessed date3 May 2020).

55. Kretsos KGolor GJullion Aet alSafety and pharmacokinetics of olokizumab, an anti-IL-6 monoclonal antibody, administered to healthy male volunteers: A randomized phase I studyClin Pharmacol Drug Dev2014;3:38895DOI10.1002/cpdd.121

56. Mazurov VIZotkin EGGaydukova IZet alEfficacy and safety of levilimab in combination with methotrexate in subjects with rheumatoid arthritis: Results of phase II AURORA studyNat Clin Pract Rheumatol2021;59:14151DOI10.47360/1995-4484-2021-141-151

57. Takeuchi TThorne CKarpouzas Get alSirukumab for rheumatoid arthritis: The phase III SIRROUND-D studyAnn Rheum Dis2017;76:20018DOI10.1136/annrheumdis-2017-211328

58. Aletaha DBingham CO 3rdTanaka Yet alEfficacy and safety of sirukumab in patients with active rheumatoid arthritis refractory to anti-TNF therapy (SIRROUND-T): A randomised, double-blind, placebo-controlled, parallel-group, multinational, phase 3 studyLancet2017;389:120617DOI10.1016/S0140-6736(17)30401-4

59. Aletaha DKerschbaumer AKastrati Ket alConsensus statement on blocking interleukin-6 receptor and interleukin-6 in inflammatory conditions: An updateAnn Rheum Dis2022DOI10.1136/ard-2022-222784

60. Kastrati KAletaha DBurmester GRet alA systematic literature review Informing the consensus statement on efficacy and safety of pharmacological treatment with interleukin-6 pathway inhibition with biological DMARDs in immune-mediated inflammatory diseasesRMD Open2022;8:e002359DOI10.1136/rmdopen-2022-002359

61. Smolen JSLandewé RBMBijlsma JWJet alEULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 updateAnn Rheum Dis2020;79:68599DOI10.1136/annrheumdis-2019-216655

62. Fraenkel LBathon JMEngland BRet al2021 American College of Rheumatology guideline for the treatment of rheumatoid arthritisArthritis Care Res (Hoboken)2021;73:92439DOI10.1002/acr.24596

63. Hetland MLHaavardsholm EARudin Aet alActive conventional treatment and three different biological treatments in early rheumatoid arthritis: Phase IV investigator initiated, randomised, observer blinded clinical trialBMJ2020;371:m4328DOI10.1136/bmj.m4328

64. Humby FDurez PBuch MHet alRituximab versus tocilizumab in anti-TNF inadequate responder patients with rheumatoid arthritis (R4RA): 16-week outcomes of a stratified, biopsy-driven, multicentre, open-label, phase 4 randomised controlled trialLancet2021;397:30517DOI10.1016/S0140-6736(20)32341-2

65. Pappas DASt John GEtzel CJet alComparative effectiveness of first-line tumour necrosis factor inhibitor versus non-tumour necrosis factor inhibitor biologics and targeted synthetic agents in patients with rheumatoid arthritis: Results from a large US registry studyAnn Rheum Dis2021;80:96102DOI10.1136/annrheumdis-2020-217209

66. Gottenberg JEMorel JPerrodeau Eet alFrench Society of Rheumatology and the investigators participating in AIR, ORA, and REGATE registries. Comparative effectiveness of rituximab, abatacept, and tocilizumab in adults with rheumatoid arthritis and inadequate response to TNF inhibitors: Prospective cohort studyBMJ2019;364:167
DOI10.1136/bmj.l67

67. Dougados MKissel KConaghan PGet alClinical, radiographic and immunogenic effects after 1 year of tocilizumab-based treatment strategies in rheumatoid arthritis: The ACT-RAY studyAnn Rheum Dis2014;73:8039DOI10.1136/annrheumdis-2013-204761

68. Burmester GRRigby WFvan Vollenhoven RFet alTocilizumab in early progressive rheumatoid arthritis: FUNCTION, a randomised controlled trialAnn Rheum Dis2016;75:108191DOI10.1136/annrheumdis-2015-207628

69. Kaneko YAtsumi TTanaka Yet alComparison of adding tocilizumab to methotrexate with switching to tocilizumab in patients with rheumatoid arthritis with inadequate response to methotrexate: 52-week results from a prospective, randomised, controlled study (SURPRISE study)Ann Rheum Dis2016;75:191723DOI10.1136/annrheumdis-2015-208426

70. Teitsma XMMarijnissen AKBijlsma JWet alTocilizumab as monotherapy or combination therapy for treating active rheumatoid arthritis: A meta-analysis of efficacy and safety reported in randomized controlled trialsArthritis Res Ther2016;18:211DOI10.1186/s13075-016-1108-9

71. Genovese MCKremer JZamani Oet alBaricitinib in patients with refractory rheumatoid arthritisN Engl J Med2016;374:124352DOI10.1056/NEJMoa1507247

72. Nasonov ELKorotaeva TVJanus kinase inhibitors in immunoinflammatory diseases: 10 years of clinical practice in rheumatologyRheumatology Science and Practice2022;60:13148DOI10.47360/1995-4484-2022-131-148

73. Aletaha DSmolen JSRemission in rheumatoid arthritis: Missing objectives by using inadequate DAS28 targetsNat Rev Rheumatol2019;15:6334DOI10.1038/s41584-019-0279-6

74. Felson DTLacaille DLaValley MPAletaha DReexamining remission definitions in rheumatoid arthritis: Considering disease activity score in 28 joints, C-reactive protein, and patient global assessmentACR Open Rheumatol2022;4:1237DOI10.1002/acr2.11345

75. Lauper KIudici MMongin Det alEffectiveness of TNF-inhibitors, abatacept, IL6-inhibitors and JAK-inhibitors in 31 846 patients with rheumatoid arthritis in 19 registers from the “JAK-pot” collaborationAnn Rheum Dis2022;annrheumdis-2022-222586DOI10.1136/annrheumdis-2022-222586

76. Shimamoto KIto TOzaki Yet alSerum interleukin 6 before and after therapy with tocilizumab is a principal biomarker in patients with rheumatoid arthritisJ Rheumatol2013;40:107481DOI10.3899/jrheum.121389

77. Nishimoto NAmano KHirabayashi Yet alDrug free remission/low disease activity after cessation of tocilizumab (actemra) monotherapy (DREAM) studyMod Rheumatol2014;24:1725DOI10.3109/14397595.2013.854079

78. Shafran IHAlasti FSmolen JSAletaha DImplication of baseline levels and early changes of C-reactive protein for subsequent clinical outcomes of patients with rheumatoid arthritis treated with tocilizumabAnn Rheum Dis2020;79:87482DOI10.1136/annrheumdis-2019-215987

79. Boyapati ASchwartzman SMsihid Jet alAssociation of high serum interleukin-6 levels with severe progression of rheumatoid arthritis and increased treatment response differentiating sarilumab from adalimumab or methotrexate in a post hoc analysisArthritis Rheumatol2020;72:145666DOI10.1002/art.41299

80. Gardette AOttaviani SSellam Jet alBody mass index and response to tocilizumab in rheumatoid arthritis: A real life studyClin Rheumatol2016;35:85761DOI10.1007/s10067-016-3183-3

81. Davies RVivekanantham ALunt Met alSAT0103 the effect of bodyweight on response to intravenous or subcutaneous tocilizumab in patients with rheumatoid arthritisAnn Rheum Dis2020;79:981DOI10.1136/annrheumdis-2020-eular.4164

82. Nouri BNair NBarton APredicting treatment response to IL6R blockers in rheumatoid arthritisRheumatology (Oxford)2020;59:360310DOI10.1093/rheumatology/keaa529

83. Burmester GRButtgereit FBernasconi Cet alContinuing versus tapering glucocorticoids after achievement of low disease activity or remission in rheumatoid arthritis (SEMIRA): A double-blind, multicentre, randomised controlled trialLancet2020;396:26776DOI10.1016/S0140-6736(20)30636-X

84. Crnkic Kapetanovic MSaxne TTruedsson LGeborek PPersistence of antibody response 1.5 years after vaccination using 7-valent pneumococcal conjugate vaccine in patients with arthritis treated with different antirheumatic drugsArthritis Res Ther2013;15:R1DOI10.1186/ar4127

85. Mori SUeki YAkeda Yet alPneumococcal polysaccharide vaccination in rheumatoid arthritis patients receiving tocilizumab therapyAnn Rheum Dis2013;72:13626DOI10.1136/annrheumdis-2012-202658

86. BinghamCO 3rdRizzo WKivitz Aet alHumoral immune response to vaccines in patients with rheumatoid arthritis treated with tocilizumab: Results of a randomised controlled trial (VISARA)Ann Rheum Dis2015;74:81822DOI10.1136/annrheumdis-2013-204427

87. Alunno ANajm AMachado PMet alEULAR points to consider on pathophysiology and use of immunomodulatory therapies in COVID-19Ann Rheum Dis2021;80:698706DOI10.1136/annrheumdis-2020-219724

88. Rutherford AIPatarata ESubesinghe Set alOpportunistic infections in rheumatoid arthritis patients exposed to biologic therapy: Results from the British Society for rheumatology biologics register for rheumatoid arthritisRheumatology (Oxford)2018;57:9971001DOI10.1093/rheumatology/key023

89. Curtis JRXie FYun Het alReal-world comparative risks of herpes virus infections in tofacitinib and biologic-treated patients with rheumatoid arthritisAnn Rheum Dis2016;75:18437DOI10.1136/annrheumdis-2016-209131

90. Souto AManeiro JRSalgado Eet alRisk of tuberculosis in patients with chronic immune-mediated inflammatory diseases treated with biologics and tofacitinib: A systematic review and meta-analysis of randomized controlled trials and long-term extension studiesRheumatology (Oxford)2014;53:187285DOI10.1093/rheumatology/keu172

91. Wadström HFrisell TAskling JAnti-Rheumatic Therapy in Sweden (ARTIS) Study GroupMalignant neoplasms in patients with rheumatoid arthritis treated with tumor necrosis factor inhibitors, tocilizumab, abatacept, or rituximab in clinical practice: A nationwide cohort study from SwedenJAMA Intern Med2017;177:160512DOI10.1001/jamainternmed.2017.4332

92. Harigai MNanki TKoike Ret alRisk for malignancy in rheumatoid arthritis patients treated with biological disease-modifying antirheumatic drugs compared to the general population: A nationwide cohort study in japanMod Rheumatol2016;26:64250DOI10.3109/14397595.2016.1141740

93. Strangfeld ARichter ASiegmund Bet alRisk for lower intestinal perforations in patients with rheumatoid arthritis treated with tocilizumab in comparison to treatment with other biologic or conventional synthetic dmardsAnn Rheum Dis2017;76:50410DOI10.1136/annrheumdis-2016-209773

94. Bulte JPPostma NBeukema Met alCOVID 19 and the risk of gastro-intestinal perforation: A case series and literature reviewJ Crit Care2022;67:1003DOI10.1016/j.jcrc.2021.10.020

95. Genovese MCKremer JMvan Vollenhoven RFet alTransaminase levels and hepatic events during Tocilizumab treatment: Pooled analysis of long-term clinical trial safety data in rheumatoid arthritisArthritis Rheumatol2017;69:175161DOI10.1002/art.40176

96. McInnes IBThompson LGiles JTet alEffect of interleukin-6 receptor blockade on surrogates of vascular risk in rheumatoid arthritis: MEASURE, a randomised, placebo-controlled studyAnn Rheum Dis2015;74:694702DOI10.1136/annrheumdis-2013-204345

97. Gabay CMcInnes IBKavanaugh Aet alComparison of lipid and lipid-associated cardiovascular risk marker changes after treatment with tocilizumab or adalimumab in patients with rheumatoid arthritisAnn Rheum Dis2016;75:180612DOI10.1136/annrheumdis-2015-207872

98. Giles JTSattar NGabriel SGay Set alCardiovascular safety of tocilizumab versus etanercept in rheumatoid arthritis: A randomized controlled trialArthritis Rheumatol2020;72:3140DOI10.1002/art.41095

99. Tyrrell DJGoldstein DRAgeing and atherosclerosis: Vascular intrinsic and extrinsic factors and potential role of IL-6Nat Rev Cardiol2021;18:5868DOI10.1038/s41569-020-0431-7

100. Feng YYe DWang Zet alThe role of interleukin-6 family members in cardiovascular diseasesFront Cardiovasc Med2022;9:818890DOI10.3389/fcvm.2022.818890

101. Ridker PMRane MInterleukin-6 signaling and anti-interleukin-6 therapeutics in cardiovascular diseaseCirc Res2021;128:172846DOI10.1161/CIRCRESAHA.121.319077

102. Kim SCSolomon DHRogersJRet alCardiovascular safety of Tocilizumab versus tumor necrosis factor inhibitors in patients with rheumatoid arthritis: A multi-database cohort studyArthritis Rheumatol2017;69:115464DOI10.1002/art.40084

103. Kim SCSolomon DHRogers JRet alNo difference in cardiovascular risk of tocilizumab versus abatacept for rheumatoid arthritis: A multi-database cohort studySemin Arthritis Rheum2018;48:399405DOI10.1016/j.semarthrit.2018.03.012

104. Xie FYun HLevitan EBet alTocilizumab and the risk of cardiovascular disease: Direct comparison among biologic disease-modifying antirheumatic drugs for rheumatoid arthritis patientsArthritis Care Res (Hoboken)2019;71:100418DOI10.1002/acr.23737

105. Huse CAnstensrud AKMichelsen AEet alInterleukin-6 inhibition in ST-elevation myocardial infarction: Immune cell profile in the randomised ASSAIL-MI trialEBioMedicine2022;80:104013DOI10.1016/j.ebiom.2022.104013

106. Ridker PMDevalaraja MBaeres FMMet alIl-6 inhibition with ziltivekimab in patients at high atherosclerotic risk (rescue): A double-blind, randomised, placebo-controlled, phase 2 trialLancet2021;397:20609DOI10.1016/S0140-6736(21)00520-1

107. Paul SKMontvida OBest JHet alEffectiveness of biologic and non-biologic antirheumatic drugs on anaemia markers in 153,788 patients with rheumatoid arthritis: New evidence from real-world dataSemin Arthritis Rheum2018;47:47884DOI10.1016/j.semarthrit.2017.08.001

108. Moots RJSebba ARigby Wet alEffect of tocilizumab on neutrophils in adult patients with rheumatoid arthritis: Pooled analysis of data from phase 3 and 4 clinical trialsRheumatology (Oxford)2017;56:5419DOI10.1093/rheumatology/kew370

109. Chen SKLee HJin Yet alUse of biologic or targeted-synthetic disease-modifying anti-rheumatic drugs and risk of diabetes treatment intensification in patients with rheumatoid arthritis and diabetes mellitusRheumatol Adv Pract2020;4:rkaa027DOI10.1093/rap/rkaa027

110. Genovese MCBurmester GRHagino Oet alInterleukin-6 receptor blockade or TNFα inhibition for reducing glycaemia in patients with RA and diabetes: Post hoc analyses of three randomised, controlled trialsArthritis Res Ther2020;22:206DOI10.1186/s13075-020-02229-5

111. Otsuka YKiyohara CKashiwado Yet alEffects of tumor necrosis factor inhibitors and tocilizumab on the glycosylated hemoglobin levels in patients with rheumatoid arthritis: An observational studyPLoS One2018;13:e0196368DOI10.1371/journal.pone.0196368

112. Mori SYoshitama THidaka Tet alEffectiveness and safety of tocilizumab therapy for patients with rheumatoid arthritis and renal insufficiency: A real-life registry study in Japan (the ACTRA-RI study)Ann Rheum Dis2015;74:62730DOI10.1136/annrheumdis-2014-206695

113. Okuda YAA amyloidosis – Benefits and prospects of IL-6 inhibitorsMod Rheumatol2019;29:26874DOI10.1080/14397595.2018.1515145

114. Jung JYKim YBKim JWet alBiologic therapy for amyloid A amyloidosis secondary to rheumatoid arthritis treated with interleukin 6 therapy: Case report and review of literatureMedicine (Baltimore)2021;100:32DOI10.1097/MD.0000000000026843

115. Curtis JRSarsour KNapalkov Pet alIncidence and complications of interstitial lung disease in users of tocilizumab, rituximab, abatacept and anti-tumor necrosis factor α agents, a retrospective cohort studyArthritis Res Ther2015;17:319DOI10.1186/s13075-015-0835-7

116. Strangfeld AMeissner YSchäfer BL. No confirmation of increased risk of idiopathic facial nerve palsy under tocilizumabArthritis Rheumatol 2019;71:23068.

117. Zhang CZhang MQiu Wet al, . Safety and efficacy of tocilizumab versus azathioprine in highly relapsing neuromyelitis optica spectrum disorder (TANGO): An open-label, multicentre, randomised, phase 2 trialLancet Neurol2020;19:391401DOI10.1016/S1474-4422(20)30070-3

118. Khanna DLin CJFFurst DEet al, . Tocilizumab in systemic sclerosis: A randomised, double-blind, placebo-controlled, phase 3 trialLancet Respir Med2020;8:96374DOI10.1016/S2213-2600(20)30318-0

119. Roofeh DLin CJFGoldin Jet al, . Tocilizumab prevents progression of early systemic sclerosis-associated interstitial lung diseaseArthritis Rheumatol2021;73:130110DOI10.1002/art.41668

120. Shin APark EHDong YHet alComparative risk of osteoporotic fracture among patients with rheumatoid arthritis receiving TNF inhibitors versus other biologics: A cohort studyOsteoporos Int2020;31:21319DOI10.1007/s00198-020-05488-9

121. Kume KAmano KYamada Set alThe effect of tocilizumab on bone mineral density in patients with methotrexate-resistant active rheumatoid arthritisRheumatology (Oxford)2014;53:9003DOI10.1093/rheumatology/ket468

122. Chen YMChen HHHuang WNet alTocilizumab potentially prevents bone loss in patients with anticitrullinated protein antibody-positive rheumatoid arthritisPLoS One2017;12:11DOI10.1371/journal.pone.0188454

123. Yun HXie FBeyl RNet alRisk of hypersensitivity to biologic agents among medicare patients with rheumatoid arthritisArthritis Care Res (Hoboken)2017;69:152634DOI10.1002/acr.23141

124. Burmester GRChoy EKivitz Aet alLow immunogenicity of tocilizumab in patients with rheumatoid arthritisAnn Rheum Dis2017;76:107885DOI10.1136/annrheumdis-2016-210297

125. Nasonov ESamsonov MThe role of interleukin 6 inhibitors in therapy of severe COVID-19Biomed Pharmacother2020;131:110698DOI10.1016/j.biopha.2020.110698

126. McElvaney OJCurley GFRose-John SMcElvaney NGInterleukin-6: obstacles to targeting a complex cytokine in critical illnessLancet Respir Med2021;9:64354DOI10.1016/S2213-2600(21)00103-X

127. van de Veerdonk FLGiamarellos-Bourboulis EPickkers Pet alA guide to immunotherapy for COVID-19Nat Med2022;28:3950DOI10.1038/s41591-021-01643-9

128. Antonov VNIgnatova GLPribytkova OVet alExperience of olokizumab use in COVID-19 patientsTer Arkh2020;92:14854DOI10.26442/00403660.2020.12.200522

129. Бобкова ССЖуков ФФПроценко ДНet alСравнительная эффективность и безопасность применения препаратов моноклональных антитед к ИЛ-6 у пациентов с новой коронавирусной инфекцией тяжелого течения. Ретроспективное когортное исследование. Вестник интенсивной терапии имАИ Салтанова2021;1:6976DOI10.21320/1818-474X-2021-1-69-76

130. Kang SNarazaki MMetwally HKishimoto THistorical overview of the interleukin-6 family cytokineJ Exp Med2020;217:e20190347DOI10.1084/jem.20190347

131. Gordeev АVGalushko ЕАNasonov ЕLThe concept of multimorbidity in rheumatologic practiceRheumatology science and practice2014;52:3625DOI10.14412/1995-4484-2014-362-365

132. Taylor PCAtzeni FBalsa Aet alThe key comorbidities in patients with rheumatoid arthritis: A narrative reviewJ Clin Med2021;10:509DOI10.3390/jcm10030509

133. Hill JHarrison JChristian Det alThe prevalence of comorbidity in rheumatoid arthritis: A systematic review and meta-analysisBr J Community Nurs2022;27:23241DOI10.12968/bjcn.2022.27.5.232

134. Ting EYYang ACTsai SJRole of interleukin-6 in depressive disorderInt J Mol Sci2020;21:2194DOI10.3390/ijms21062194

135. Lisitsyna ТАVeltishchev DyLila АМNasonov ЕLInterleukin 6 as a pathogenic factor mediating clinical manifestations and a therapeutic target for rheumatic diseases and depressive disordersRheumatology Science and Practice2019;57:31827DOI10.14412/1995-4484-2019-318-327

136. Roohi EJaafari NHashemian FOn inflammatory hypothesis of depression: What is the role of IL-6 in the middle of the chaos? J Neuroinflammation2021;18:45DOI10.1186/s12974-021-02100-7

137. Sebba APain: A review of Interleukin-6 and its roles in the pain of rheumatoid arthritisOpen Access Rheumatol2021;13:3143DOI10.2147/OARRR.S291388

138. Antonio AASantos RNAbariga SATocilizumab for giant cell arteritisCochrane Database Syst Rev2021;8:CD013484DOI10.1002/14651858.CD013484.pub2

139. Conway RPutman MSMackie SLBenchmarking tocilizumab use for giant cell arteritisRheumatol Adv Pract2022;6:rkac037DOI10.1093/rap/rkac037

140. Beketova TVUshakova MANikishinaNYuet alExperience with tocilizumab, an interleukin 6 inhibitor, used for the treatment of giant cell arteritis with severe comorbidityRheumatology Science and Practice2018;56:22834DOI10.14412/1995-4484-2018-228-234

141. Li HShuai ZEfficacy of tocilizumab for refractory Takayasu arteritis: A retrospective study and literature reviewHeart Vessels2022;37:88494DOI10.1007/s00380-021-01981-1

142. Akioka SInterleukin-6 in juvenile idiopathic arthritisMod Rheumatol2019;29:27586DOI10.1080/14397595.2019.1574697

143. Castañeda SMartínez-Quintanilla DMartín-Varillas JLet alTocilizumab for the treatment of adult-onset still’s diseaseExpert Opin Biol Ther2019;19:27386DOI10.1080/14712598.2019.1590334

144. Koga TKawakami AInterleukin-6 inhibition in the treatment of autoinflammatory diseasesFront Immunol2022;13:956795DOI10.3389/fimmu.2022.956795

145. Si STeachey DTSpotlight on tocilizumab in the treatment of CAR-T-cell-induced cytokine release syndrome: Clinical evidence to dateTher Clin Risk Manag2020;16:70514DOI10.2147/TCRM.S223468

146. Zhang JLuo WMiao CZhong JHypercatabolism and anti-catabolic therapies in the persistent inflammation, immunosuppression, and catabolism syndromeFront Nutr2022;9:941097DOI10.3389/fnut.2022.941097

Further Resources

Share this Article
Related Content In Rheumatoid Arthritis
  • Copied to clipboard!
    accredited arrow-down-editablearrow-downarrow_leftarrow-right-bluearrow-right-dark-bluearrow-right-greenarrow-right-greyarrow-right-orangearrow-right-whitearrow-right-bluearrow-up-orangeavatarcalendarchevron-down consultant-pathologist-nurseconsultant-pathologistcrosscrossdownloademailexclaimationfeedbackfiltergraph-arrowinterviewslinkmdt_iconmenumore_dots nurse-consultantpadlock patient-advocate-pathologistpatient-consultantpatientperson pharmacist-nurseplay_buttonplay-colour-tmcplay-colourAsset 1podcastprinter scenerysearch share single-doctor social_facebooksocial_googleplussocial_instagramsocial_linkedin_altsocial_linkedin_altsocial_pinterestlogo-twitter-glyph-32social_youtubeshape-star (1)tick-bluetick-orangetick-red tick-whiteticktimetranscriptup-arrowwebinar Sponsored Department Location NEW TMM Corporate Services Icons-07NEW TMM Corporate Services Icons-08NEW TMM Corporate Services Icons-09NEW TMM Corporate Services Icons-10NEW TMM Corporate Services Icons-11NEW TMM Corporate Services Icons-12Salary £ TMM-Corp-Site-Icons-01TMM-Corp-Site-Icons-02TMM-Corp-Site-Icons-03TMM-Corp-Site-Icons-04TMM-Corp-Site-Icons-05TMM-Corp-Site-Icons-06TMM-Corp-Site-Icons-07TMM-Corp-Site-Icons-08TMM-Corp-Site-Icons-09TMM-Corp-Site-Icons-10TMM-Corp-Site-Icons-11TMM-Corp-Site-Icons-12TMM-Corp-Site-Icons-13TMM-Corp-Site-Icons-14TMM-Corp-Site-Icons-15TMM-Corp-Site-Icons-16TMM-Corp-Site-Icons-17TMM-Corp-Site-Icons-18TMM-Corp-Site-Icons-19TMM-Corp-Site-Icons-20TMM-Corp-Site-Icons-21TMM-Corp-Site-Icons-22TMM-Corp-Site-Icons-23TMM-Corp-Site-Icons-24TMM-Corp-Site-Icons-25TMM-Corp-Site-Icons-26TMM-Corp-Site-Icons-27TMM-Corp-Site-Icons-28TMM-Corp-Site-Icons-29TMM-Corp-Site-Icons-30TMM-Corp-Site-Icons-31TMM-Corp-Site-Icons-32TMM-Corp-Site-Icons-33TMM-Corp-Site-Icons-34TMM-Corp-Site-Icons-35TMM-Corp-Site-Icons-36TMM-Corp-Site-Icons-37TMM-Corp-Site-Icons-38TMM-Corp-Site-Icons-39TMM-Corp-Site-Icons-40TMM-Corp-Site-Icons-41TMM-Corp-Site-Icons-42TMM-Corp-Site-Icons-43TMM-Corp-Site-Icons-44TMM-Corp-Site-Icons-45TMM-Corp-Site-Icons-46TMM-Corp-Site-Icons-47TMM-Corp-Site-Icons-48TMM-Corp-Site-Icons-49TMM-Corp-Site-Icons-50TMM-Corp-Site-Icons-51TMM-Corp-Site-Icons-52TMM-Corp-Site-Icons-53TMM-Corp-Site-Icons-54TMM-Corp-Site-Icons-55TMM-Corp-Site-Icons-56TMM-Corp-Site-Icons-57TMM-Corp-Site-Icons-58TMM-Corp-Site-Icons-59TMM-Corp-Site-Icons-60TMM-Corp-Site-Icons-61TMM-Corp-Site-Icons-62TMM-Corp-Site-Icons-63TMM-Corp-Site-Icons-64TMM-Corp-Site-Icons-65TMM-Corp-Site-Icons-66TMM-Corp-Site-Icons-67TMM-Corp-Site-Icons-68TMM-Corp-Site-Icons-69TMM-Corp-Site-Icons-70TMM-Corp-Site-Icons-71TMM-Corp-Site-Icons-72